在CentOS上管理PyTorch项目可以通过以下几个步骤进行:
安装Anaconda或Miniconda:
conda create -n pytorch_env python=3.9 conda activate pytorch_env 安装依赖项:
sudo yum update -y sudo yum groupinstall -y "Development Tools" sudo yum install -y cmake3 git wget sudo yum install python3 python3-pip -y 使用pip安装:
pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu117 使用conda安装:
conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch -c conda-forge import torch print(torch.__version__) print(torch.cuda.is_available()) # 如果使用GPU版本,应该返回True python3 -m venv pytorch_env source pytorch_env/bin/activate git clone https://github.com/your-username/your-pytorch-project.git cd your-pytorch-project requirements.txt文件:pip freeze > requirements.txt pip install -r requirements.txt FROM continuumio/miniconda3:latest RUN apt-get update -y && \ apt-get install -y build-essential python3-dev libegl1 libgl1-mesa-glx libgl1 libgbm1 libxcb-xinerama0 libxkbcommon-x11-0 libglvnd-dev ffmpeg libsm6 libxext6 mesa-utils libx264-dev && \ apt-get clean && \ rm -rf /var/lib/apt/lists/* ENV LD_LIBRARY_PATH=/usr/lib/x86_64-linux-gnu:/usr/lib:/usr/local/lib:$LD_LIBRARY_PATH COPY environment.yml /tmp/environment.yml RUN conda env create -f /tmp/environment.yml && \ rm -rf /tmp/environment.yml ENV PATH="/home/miniconda3/bin:${PATH}" COPY . /app WORKDIR /app CMD ["python", "your_script.py"] 通过以上步骤,你可以在CentOS上有效地管理PyTorch项目,确保项目依赖和环境配置的准确性和一致性。