在PyTorch中,全连接神经网络的初始化可以通过以下几种方法:
nn.init.kaiming_uniform_或nn.init.kaiming_normal_函数进行初始化。import torch.nn as nn def initialize_weights(m): if isinstance(m, nn.Linear): nn.init.kaiming_uniform_(m.weight, nonlinearity='relu') if m.bias is not None: nn.init.constant_(m.bias, 0) model = YourModel() model.apply(initialize_weights) nn.init.xavier_uniform_或nn.init.xavier_normal_函数进行初始化。import torch.nn as nn def initialize_weights(m): if isinstance(m, nn.Linear): nn.init.xavier_uniform_(m.weight) if m.bias is not None: nn.init.constant_(m.bias, 0) model = YourModel() model.apply(initialize_weights) nn.init.normal_函数进行初始化。import torch.nn as nn def initialize_weights(m): if isinstance(m, nn.Linear): nn.init.normal_(m.weight, mean=0, std=0.05) if m.bias is not None: nn.init.constant_(m.bias, 0) model = YourModel() model.apply(initialize_weights) nn.init.uniform_函数进行初始化。import torch.nn as nn def initialize_weights(m): if isinstance(m, nn.Linear): nn.init.uniform_(m.weight, -1, 1) if m.bias is not None: nn.init.constant_(m.bias, 0) model = YourModel() model.apply(initialize_weights) 在选择初始化方法时,可以考虑模型的深度、激活函数的类型以及数据的分布等因素。