在CentOS上进行PyTorch的分布式训练,可以按照以下步骤进行:
conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch
(根据你的CUDA版本选择合适的cudatoolkit)。PYTHONPATH
和LD_LIBRARY_PATH
。python -m torch.distributed.launch
命令来启动分布式训练。python -m torch.distributed.launch --nproc_per_node=NUM_GPUS_YOU_HAVE YOUR_TRAINING_SCRIPT.py
torch.distributed.init_process_group()
来初始化分布式环境。以下是一个简单的分布式训练示例:
import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader, DistributedSampler from torchvision import datasets, transforms # 初始化分布式环境 world_size = torch.cuda.device_count() # 获取GPU数量 rank = int(os.environ['LOCAL_RANK']) # 获取当前节点的rank torch.distributed.init_process_group(backend='nccl', init_method='env://') # 定义模型 class SimpleModel(nn.Module): def __init__(self): super(SimpleModel, self).__init__() self.fc = nn.Linear(784, 10) def forward(self, x): x = x.view(-1, 784) return self.fc(x) model = SimpleModel().to(rank) model = nn.parallel.DistributedDataParallel(model, device_ids=[rank]) # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.01) # 加载数据 transform = transforms.Compose([transforms.ToTensor()]) train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform) train_sampler = DistributedSampler(train_dataset) train_loader = DataLoader(dataset=train_dataset, batch_size=64, sampler=train_sampler) # 训练模型 for epoch in range(5): train_sampler.set_epoch(epoch) running_loss = 0.0 for i, data in enumerate(train_loader, 0): inputs, labels = data[0].to(rank), data[1].to(rank) optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() print(f'Epoch {epoch + 1}, Loss: {running_loss / len(train_loader)}') # 清理分布式环境 torch.distributed.destroy_process_group()
通过以上步骤,你应该能够在CentOS上成功进行PyTorch的分布式训练。