温馨提示×

Linux C++怎样实现进程间通信

小樊
74
2025-03-19 01:31:12
栏目: 编程语言

在Linux环境下,C++可以通过多种方式实现进程间通信(IPC)。以下是一些常见的IPC机制:

  1. 管道(Pipes):

    • 匿名管道(Anonymous Pipes):通常用于具有亲缘关系的进程间通信,如父子进程。
    • 命名管道(Named Pipes,FIFOs):可以在不相关的进程之间使用,它们在文件系统中有一个路径名。
  2. 信号(Signals):

    • 用于通知接收进程某个事件已经发生。
  3. 消息队列(Message Queues):

    • 允许进程发送和接收消息。
  4. 共享内存(Shared Memory):

    • 多个进程可以映射同一段物理内存,从而实现高效的数据交换。
  5. 信号量(Semaphores):

    • 主要用于进程同步,控制多个进程对共享资源的访问。
  6. 套接字(Sockets):

    • 可以用于不同机器之间的进程通信,也适用于同一台机器上的进程。

下面是一些简单的示例代码,展示了如何在C++中使用这些IPC机制:

匿名管道示例

#include <iostream> #include <unistd.h> #include <sys/types.h> #include <sys/wait.h> int main() { int pipefd[2]; pid_t pid; char buffer[10]; // 创建匿名管道 if (pipe(pipefd) == -1) { perror("pipe"); exit(EXIT_FAILURE); } // 创建子进程 pid = fork(); if (pid == -1) { perror("fork"); exit(EXIT_FAILURE); } if (pid > 0) { // 父进程 close(pipefd[0]); // 关闭不需要的读端 const char* message = "Hello from parent!"; write(pipefd[1], message, strlen(message) + 1); // 写入管道 close(pipefd[1]); // 关闭写端 wait(NULL); // 等待子进程结束 } else { // 子进程 close(pipefd[1]); // 关闭不需要的写端 read(pipefd[0], buffer, sizeof(buffer)); // 从管道读取 std::cout << "Child received: " << buffer << std::endl; close(pipefd[0]); // 关闭读端 } return 0; } 

共享内存示例

#include <iostream> #include <sys/ipc.h> #include <sys/shm.h> #include <unistd.h> int main() { key_t key = ftok("shmfile", 65); // 生成键值 int shmid = shmget(key, 1024, 0666|IPC_CREAT); // 创建共享内存段 char *str = (char*) shmat(shmid, (void*)0, 0); // 连接到共享内存 strcpy(str, "Hello shared memory!"); // 写入数据 std::cout << "Shared memory written to: " << str << std::endl; sleep(5); // 等待一段时间 shmdt(str); // 断开共享内存连接 shmctl(shmid, IPC_RMID, NULL); // 删除共享内存段 return 0; } 

套接字示例

// 服务器端代码 #include <iostream> #include <sys/socket.h> #include <netinet/in.h> #include <unistd.h> int main() { int server_fd, new_socket; struct sockaddr_in address; int opt = 1; int addrlen = sizeof(address); char buffer[1024] = {0}; // 创建套接字文件描述符 if ((server_fd = socket(AF_INET, SOCK_STREAM, 0)) == 0) { perror("socket failed"); exit(EXIT_FAILURE); } // 设置套接字选项 if (setsockopt(server_fd, SOL_SOCKET, SO_REUSEADDR | SO_REUSEPORT, &opt, sizeof(opt))) { perror("setsockopt"); exit(EXIT_FAILURE); } address.sin_family = AF_INET; address.sin_addr.s_addr = INADDR_ANY; address.sin_port = htons(8080); // 绑定套接字到地址 if (bind(server_fd, (struct sockaddr *)&address, sizeof(address)) < 0) { perror("bind failed"); exit(EXIT_FAILURE); } // 监听连接 if (listen(server_fd, 3) < 0) { perror("listen"); exit(EXIT_FAILURE); } // 接受连接 if ((new_socket = accept(server_fd, (struct sockaddr *)&address, (socklen_t*)&addrlen)) < 0) { perror("accept"); exit(EXIT_FAILURE); } // 读取数据 read(new_socket, buffer, 1024); std::cout << "Message from client: " << buffer << std::endl; close(new_socket); close(server_fd); return 0; } // 客户端代码 #include <iostream> #include <sys/socket.h> #include <arpa/inet.h> #include <unistd.h> int main() { int sock = 0; struct sockaddr_in serv_addr; char *hello = "Hello from client"; char buffer[1024] = {0}; // 创建套接字文件描述符 if ((sock = socket(AF_INET, SOCK_STREAM, 0)) < 0) { std::cout << " Socket creation error "; return -1; } serv_addr.sin_family = AF_INET; serv_addr.sin_port = htons(8080); // 将IPv4地址从文本转换为二进制形式 if(inet_pton(AF_INET, "127.0.0.1", &serv_addr.sin_addr) <= 0) { std::cout << " Invalid address/ Address not supported "; return -1; } // 连接到服务器 if (connect(sock, (struct sockaddr *)&serv_addr, sizeof(serv_addr)) < 0) { std::cout << " Connection Failed "; return -1; } // 发送数据 send(sock, hello, strlen(hello), 0); std::cout << "Hello message sent "; read(sock, buffer, 1024); std::cout << "Server: " << buffer << std::endl; close(sock); return 0; } 

在实际应用中,你需要根据具体的需求和场景选择合适的IPC机制。例如,如果你需要高效的数据传输,共享内存可能是最好的选择;如果你需要跨网络通信,套接字将是更合适的选择。

0