 
  Data Structure Data Structure
 Networking Networking
 RDBMS RDBMS
 Operating System Operating System
 Java Java
 MS Excel MS Excel
 iOS iOS
 HTML HTML
 CSS CSS
 Android Android
 Python Python
 C Programming C Programming
 C++ C++
 C# C#
 MongoDB MongoDB
 MySQL MySQL
 Javascript Javascript
 PHP PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Write a program in Python to filter City column elements by removing the unique prefix in a given dataframe
Assume you have a dataframe, the result for removing unique prefix city names are,
Id City 2 3 Kolkata 3 4 Hyderabad 6 7 Haryana 8 9 Kakinada 9 10 Kochin
To solve this, we will follow the steps given below −
Solution
- Define a dataframe 
- Create an empty list to append all the city column values first char’s, 
l = [] for x in df['City']: l.append(x[0])
- Create another empty list to filter repeated char. 
Set for loop and if condtion to append unique char’s. It is defined below,
l1 = [] for j in l: if(l.count(j)>1): if(j not in l1): l1.append(j)
- Create another empty list. Set for loop to access city column values and check the elements first char is present in l1 then append it to another list. 
l2 = [] for x in df['City']: if(x[0] in l1): l2.append(x)
- Finally, verify the l2 elements is present in the city column or not and print the dataframe using isin(). 
df[df['City'].isin(l2)]
Example
Let’s check the following code to get a better understanding −
import pandas as pd df = pd.DataFrame({'Id':[1,2,3,4,5,6,7,8,9,10],                      'City':['Chennai','Delhi','Kolkata','Hyderabad','Pune','Mumbai','Haryana','B engaluru','Kakinada','Kochin']                   }) l = [] for x in df['City']:    l.append(x[0]) l1 = [] for j in l:    if(l.count(j)>1):       if(j not in l1):          l1.append(j) l2 = [] for x in df['City']:    if(x[0] in l1):       l2.append(x) print(df[df['City'].isin(l2)]) Output
Id City 2 3 Kolkata 3 4 Hyderabad 6 7 Haryana 8 9 Kakinada 9 10 Kochin
Advertisements
 