 
  Data Structure Data Structure
 Networking Networking
 RDBMS RDBMS
 Operating System Operating System
 Java Java
 MS Excel MS Excel
 iOS iOS
 HTML HTML
 CSS CSS
 Android Android
 Python Python
 C Programming C Programming
 C++ C++
 C# C#
 MongoDB MongoDB
 MySQL MySQL
 Javascript Javascript
 PHP PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Write a program in Python to caluculate the adjusted and non-adjusted EWM in a given dataframe
Assume, you have a dataframe and the result for adjusted and non-adjusted EWM are −
adjusted ewm: Id Age 0 1.000000 12.000000 1 1.750000 12.750000 2 2.615385 12.230769 3 2.615385 13.425000 4 4.670213 14.479339 non adjusted ewm: Id Age 0 1.000000 12.000000 1 1.666667 12.666667 2 2.555556 12.222222 3 2.555556 13.407407 4 4.650794 14.469136
Solution
To solve this, we will follow the steps given below −
- Define a dataframe 
- Calculate adjusted ewm with delay 0.5 using df.ewm(com=0.5).mean(). 
df.ewm(com=0.5).mean()
- Calculate non-adjusted ewm with delay 0.5 using df.ewm(com=0.5).mean(). 
df.ewm(com=0.5,adjust=False).mean()
Example
import numpy as np import pandas as pd df = pd.DataFrame({'Id': [1, 2, 3, np.nan, 5],                      'Age': [12,13,12,14,15]}) print(df) print("adjusted ewm:\n",df.ewm(com=0.5).mean()) print("non adjusted ewm:\n",df.ewm(com=0.5,adjust=False).mean()) Output
Id Age 0 1.0 12 1 2.0 13 2 3.0 12 3 NaN 14 4 5.0 15 adjusted ewm: Id Age 0 1.000000 12.000000 1 1.750000 12.750000 2 2.615385 12.230769 3 2.615385 13.425000 4 4.670213 14.479339 non adjusted ewm: Id Age 0 1.000000 12.000000 1 1.666667 12.666667 2 2.555556 12.222222 3 2.555556 13.407407 4 4.650794 14.469136
Advertisements
 