 
  Data Structure Data Structure
 Networking Networking
 RDBMS RDBMS
 Operating System Operating System
 Java Java
 MS Excel MS Excel
 iOS iOS
 HTML HTML
 CSS CSS
 Android Android
 Python Python
 C Programming C Programming
 C++ C++
 C# C#
 MongoDB MongoDB
 MySQL MySQL
 Javascript Javascript
 PHP PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Return the data portion of the masked array as a hierarchical Python list
To return the data portion of the masked array as a hierarchical Python list, use the ma.MaskedArray.tolist() method in Numpy. Data items are converted to the nearest compatible Python type.
Masked values are converted to fill_value. If fill_value is None, the corresponding entries in the output list will be None. The method returns the Python list representation of the masked array.
A masked array is the combination of a standard numpy.ndarray and a mask. A mask is either nomask, indicating that no value of the associated array is invalid, or an array of booleans that determines for each element of the associated array whether the value is valid or not.
Steps
At first, import the required library −
import numpy as np import numpy.ma as ma
Create an array with int elements using the numpy.array() method −
arr = np.array([[49, 85, 45], [67, 33, 59]]) print("Array...
", arr) print("
Array type...
", arr.dtype) Get the dimensions of the Array −
print("Array Dimensions...
",arr.ndim)  Create a masked array and mask some of them as invalid −
maskArr = ma.masked_array(arr, mask =[[0, 0, 1], [ 0, 1, 0]]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype) Get the dimensions of the Masked Array −
print("
Our Masked Array Dimensions...
",maskArr.ndim)  Get the shape of the Masked Array −
print("
Our Masked Array Shape...
",maskArr.shape) Get the number of elements of the Masked Array −
print("
Elements in the Masked Array...
",maskArr.size)  To return the data portion of the masked array as a hierarchical Python list, use the ma.MaskedArray.tolist() method in Numpy −
print("
Result of the transformation...
",maskArr.tolist())  Example
# Python ma.MaskedArray - Return the data portion of the masked array as a hierarchical Python list import numpy as np import numpy.ma as ma # Create an array with int elements using the numpy.array() method arr = np.array([[49, 85, 45], [67, 33, 59]]) print("Array...
", arr) print("
Array type...
", arr.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr.ndim) # Create a masked array and mask some of them as invalid maskArr = ma.masked_array(arr, mask =[[0, 0, 1], [ 0, 1, 0]]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype) # Get the dimensions of the Masked Array print("
Our Masked Array Dimensions...
",maskArr.ndim) # Get the shape of the Masked Array print("
Our Masked Array Shape...
",maskArr.shape) # Get the number of elements of the Masked Array print("
Elements in the Masked Array...
",maskArr.size) # To return the data portion of the masked array as a hierarchical Python list, use the ma.MaskedArray.tolist() method in Numpy # Data items are converted to the nearest compatible Python type. # Masked values are converted to "fill_value" parameter. # We have set fill_value as None, i.e. the corresponding entries in the output list will be None. print("
Result of the transformation...
",maskArr.tolist()) Output
Array... [[49 85 45] [67 33 59]] Array type... int64 Array Dimensions... 2 Our Masked Array [[49 85 --] [67 -- 59]] Our Masked Array type... int64 Our Masked Array Dimensions... 2 Our Masked Array Shape... (2, 3) Elements in the Masked Array... 6 Result of the transformation... [[49, 85, None], [67, None, 59]]
