 
  Data Structure Data Structure
 Networking Networking
 RDBMS RDBMS
 Operating System Operating System
 Java Java
 MS Excel MS Excel
 iOS iOS
 HTML HTML
 CSS CSS
 Android Android
 Python Python
 C Programming C Programming
 C++ C++
 C# C#
 MongoDB MongoDB
 MySQL MySQL
 Javascript Javascript
 PHP PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Return a view of the MaskedArray data in Numpy
To return a view of the MaskedArray data in Numpy, use the ma.MaskedArray.view() method.
The a.view() is used two different ways
- a.view(some_dtype) or a.view(dtype=some_dtype) constructs a view of the array’s memory with a different data-type. This can cause a reinterpretation of the bytes of memory. 
- a.view(ndarray_subclass) or a.view(type=ndarray_subclass) just returns an instance of ndarray_subclass that looks at the same array. This does not cause a reinterpretation of the memory. 
Steps
At first, import the required library −
import numpy as np import numpy.ma as ma
Create an array with int elements using the numpy.array() method −
arr = np.array([[35, 85], [67, 33]]) print("Array...
", arr) print("
Array type...
", arr.dtype) Get the dimensions of the Array −
print("Array Dimensions...
",arr.ndim) Create a masked array and mask some of them as invalid −
maskArr = ma.masked_array(arr, mask =[[0, 1], [ 0, 1]]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype) Get the itemsize of the Masked Array −
print("
Our Masked Array itemsize...
", maskArr.itemsize) Get the dimensions of the Masked Array −
print("
Our Masked Array Dimensions...
",maskArr.ndim) Get the shape of the Masked Array −
print("
Our Masked Array Shape...
",maskArr.shape)  Copying −
resArr = maskArr.copy()
Return a view of the MaskedArray data in Numpy, use the ma.MaskedArray.view() method −
print("
View...
",resArr.view())  Example
# Python ma.MaskedArray - Return a view of the MaskedArray data import numpy as np import numpy.ma as ma # Create an array with int elements using the numpy.array() method arr = np.array([[35, 85], [67, 33]]) print("Array...
", arr) print("
Array type...
", arr.dtype) print("
Array itemsize...
", arr.itemsize) # Get the dimensions of the Array print("Array Dimensions...
",arr.ndim) # Create a masked array and mask some of them as invalid maskArr = ma.masked_array(arr, mask =[[0, 1], [ 0, 1]]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype) # Get the itemsize of the Masked Array print("
Our Masked Array itemsize...
", maskArr.itemsize) # Get the dimensions of the Masked Array print("
Our Masked Array Dimensions...
",maskArr.ndim) # Get the shape of the Masked Array print("
Our Masked Array Shape...
",maskArr.shape) # copying resArr = maskArr.copy() # To return a view of the MaskedArray data in Numpy, use the ma.MaskedArray.view() method in Numpy print("
View...
",resArr.view()) Ouptut
Array... [[35 85] [67 33]] Array type... int64 Array itemsize... 8 Array Dimensions... 2 Our Masked Array [[35 --] [67 --]] Our Masked Array type... int64 Our Masked Array itemsize... 8 Our Masked Array Dimensions... 2 Our Masked Array Shape... (2, 2) View... [[35 --] [67 --]]
