Rectangle Area II in C++



Suppose we have a list of (axis-aligned) rectangles. Here each rectangle[i] = {x1, y1, x2, y2}, where (x1, y1) is the point of the bottom-left corner, and (x2, y2) are the point of the top-right corner of the ith rectangle.

We have to find the total area covered by all rectangles in the plane. The answer may be very , so we can use modulo 10^9 + 7.

So, if the input is like

then the output will be 6.

To solve this, we will follow these steps −

  • m = 10^9 + 7

  • Define a function add(), this will take a, b,

  • return ((a mod m) + (b mod m) mod m)

  • Define one function compress this will take 2d matrix v

  • Define an array temp

  • for initialize i := 0, when i < size of v, update (increase i by 1), do −

    • insert v[i, 0] at the end of temp

    • insert v[i, 2] at the end of temp

  • sort the array temp

  • Define one map, ret

  • idx := 0

  • for initialize i := 0, when i < size of temp, update (increase i by 1), do

    • if temp[i] is not member of ret, then −

      • ret[temp[i]] := idx

      • (increase idx by 1)

  • return ret

  • From the main method do the following −

  • Define an array xv

  • insert { 0 } at the end of xv

  • for initialize i := 0, when i < size of v, update (increase i by 1), do −

    • insert v[i, 0] at the end of xv

    • insert v[i, 2] at the end of xv

  • sort the array xv

  • uniItr = first element of a list with unique elements of xv

  • delete uniItr, from xv

  • Define one map index

  • idx := 0

  • for initialize i := 0, when i < size of xv, update (increase i by 1), do −

    • index[xv[i]] := i

  • Define an array count of size same as index size

  • Define one 2D array x

  • for initialize i := 0, when i < size of v, update (increase i by 1), do −

    • x1 := v[i, 0], y1 := v[i, 1]

    • x2 := v[i, 2], y2 := v[i, 3]

    • insert { y1, x1, x2, 1 } at the end of x

    • insert { y2, x1, x2, -1 } at the end of x

  • sort the array x

  • ret := 0

  • sum := 0, currentY := 0

  • for initialize i := 0, when i < size of x, update (increase i by 1), do −

    • y := x[i, 0]

    • x1 := x[i, 1], x2 := x[i, 2]

    • sig := x[i, 3]

    • ret := add(ret, (y - currentY) * sum)

    • currentY := y

    • for initialize i := index[x1], when i < index[x2], update (increase i by 1), do −

      • count[i] := count[i] + sig

    • sum := 0

    • for initialize i := 0, when i < size of count, update (increase i by 1), do −

      • if count[i] > 0, then

        • sum := sum + (xv[i + 1] - xv[i])

  • return ret mod m

Let us see the following implementation to get better understanding −

Example

 Live Demo

#include <bits/stdc++.h> using namespace std; typedef long long int lli; const int m = 1e9 + 7; class Solution {    public:    lli add(lli a, lli b){       return ((a % m) + (b % m) % m);    }    map<int, int> compress(vector<vector<int> >& v){       vector<int> temp;       for (int i = 0; i < v.size(); i++) {          temp.push_back(v[i][0]);          temp.push_back(v[i][2]);       }       sort(temp.begin(), temp.end());       map<int, int> ret;       int idx = 0;       for (int i = 0; i < temp.size(); i++) {          if (!ret.count(temp[i])) {             ret[temp[i]] = idx;             idx++;          }       }       return ret;    }    int rectangleArea(vector<vector<int> >& v){       vector<int> xv;       xv.push_back({ 0 });       for (int i = 0; i < v.size(); i++) {          xv.push_back(v[i][0]);          xv.push_back(v[i][2]);       }       sort(xv.begin(), xv.end());       vector<int>::iterator uniItr = unique(xv.begin(), xv.end());       xv.erase(uniItr, xv.end());       map<int, int> index;       int idx = 0;       for (int i = 0; i < xv.size(); i++) {          index[xv[i]] = i;       }       vector<int> count(index.size());       vector<vector<int> > x;       int x1, x2, y1, y2;       for (int i = 0; i < v.size(); i++) {          x1 = v[i][0];          y1 = v[i][1];          x2 = v[i][2];          y2 = v[i][3];          x.push_back({ y1, x1, x2, 1 });          x.push_back({ y2, x1, x2, -1 });       }       sort(x.begin(), x.end());       lli ret = 0;       lli sum = 0, currentY = 0;       for (int i = 0; i < x.size(); i++) {          lli y = x[i][0];          x1 = x[i][1];          x2 = x[i][2];          int sig = x[i][3];          ret = add(ret, (y - currentY) * sum);          currentY = y;          for (int i = index[x1]; i < index[x2]; i++) {             count[i] += sig;          }          sum = 0;          for (int i = 0; i < count.size(); i++) {             if (count[i] > 0) {                sum += (xv[i + 1] - xv[i]);             }          }       }       return ret % m;    } }; main(){    Solution ob;    vector<vector<int>> v = {{0,0,2,2},{1,0,2,3},{1,0,3,1}};    cout << (ob.rectangleArea(v)); }

Input

{{0,0,2,2},{1,0,2,3},{1,0,3,1}}

Output

6
Updated on: 2020-06-08T10:35:39+05:30

428 Views

Kickstart Your Career

Get certified by completing the course

Get Started
Advertisements