 
  Data Structure Data Structure
 Networking Networking
 RDBMS RDBMS
 Operating System Operating System
 Java Java
 MS Excel MS Excel
 iOS iOS
 HTML HTML
 CSS CSS
 Android Android
 Python Python
 C Programming C Programming
 C++ C++
 C# C#
 MongoDB MongoDB
 MySQL MySQL
 Javascript Javascript
 PHP PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Rectangle Area II in C++
Suppose we have a list of (axis-aligned) rectangles. Here each rectangle[i] = {x1, y1, x2, y2}, where (x1, y1) is the point of the bottom-left corner, and (x2, y2) are the point of the top-right corner of the ith rectangle.
We have to find the total area covered by all rectangles in the plane. The answer may be very , so we can use modulo 10^9 + 7.
So, if the input is like

then the output will be 6.
To solve this, we will follow these steps −
- m = 10^9 + 7 
- Define a function add(), this will take a, b, 
- return ((a mod m) + (b mod m) mod m) 
- Define one function compress this will take 2d matrix v 
- Define an array temp 
-  for initialize i := 0, when i < size of v, update (increase i by 1), do − - insert v[i, 0] at the end of temp 
- insert v[i, 2] at the end of temp 
 
- sort the array temp 
- Define one map, ret 
- idx := 0 
-  for initialize i := 0, when i < size of temp, update (increase i by 1), do -  if temp[i] is not member of ret, then − - ret[temp[i]] := idx 
- (increase idx by 1) 
 
 
-  
- return ret 
- From the main method do the following − 
- Define an array xv 
- insert { 0 } at the end of xv 
-  for initialize i := 0, when i < size of v, update (increase i by 1), do − - insert v[i, 0] at the end of xv 
- insert v[i, 2] at the end of xv 
 
- sort the array xv 
- uniItr = first element of a list with unique elements of xv 
- delete uniItr, from xv 
- Define one map index 
- idx := 0 
-  for initialize i := 0, when i < size of xv, update (increase i by 1), do − - index[xv[i]] := i 
 
- Define an array count of size same as index size 
- Define one 2D array x 
-  for initialize i := 0, when i < size of v, update (increase i by 1), do − - x1 := v[i, 0], y1 := v[i, 1] 
- x2 := v[i, 2], y2 := v[i, 3] 
- insert { y1, x1, x2, 1 } at the end of x 
- insert { y2, x1, x2, -1 } at the end of x 
 
- sort the array x 
- ret := 0 
- sum := 0, currentY := 0 
-  for initialize i := 0, when i < size of x, update (increase i by 1), do − - y := x[i, 0] 
- x1 := x[i, 1], x2 := x[i, 2] 
- sig := x[i, 3] 
- ret := add(ret, (y - currentY) * sum) 
- currentY := y 
-  for initialize i := index[x1], when i < index[x2], update (increase i by 1), do − - count[i] := count[i] + sig 
 
- sum := 0 
-  for initialize i := 0, when i < size of count, update (increase i by 1), do − -  if count[i] > 0, then - sum := sum + (xv[i + 1] - xv[i]) 
 
 
-  
 
- return ret mod m 
Let us see the following implementation to get better understanding −
Example
#include <bits/stdc++.h> using namespace std; typedef long long int lli; const int m = 1e9 + 7; class Solution {    public:    lli add(lli a, lli b){       return ((a % m) + (b % m) % m);    }    map<int, int> compress(vector<vector<int> >& v){       vector<int> temp;       for (int i = 0; i < v.size(); i++) {          temp.push_back(v[i][0]);          temp.push_back(v[i][2]);       }       sort(temp.begin(), temp.end());       map<int, int> ret;       int idx = 0;       for (int i = 0; i < temp.size(); i++) {          if (!ret.count(temp[i])) {             ret[temp[i]] = idx;             idx++;          }       }       return ret;    }    int rectangleArea(vector<vector<int> >& v){       vector<int> xv;       xv.push_back({ 0 });       for (int i = 0; i < v.size(); i++) {          xv.push_back(v[i][0]);          xv.push_back(v[i][2]);       }       sort(xv.begin(), xv.end());       vector<int>::iterator uniItr = unique(xv.begin(), xv.end());       xv.erase(uniItr, xv.end());       map<int, int> index;       int idx = 0;       for (int i = 0; i < xv.size(); i++) {          index[xv[i]] = i;       }       vector<int> count(index.size());       vector<vector<int> > x;       int x1, x2, y1, y2;       for (int i = 0; i < v.size(); i++) {          x1 = v[i][0];          y1 = v[i][1];          x2 = v[i][2];          y2 = v[i][3];          x.push_back({ y1, x1, x2, 1 });          x.push_back({ y2, x1, x2, -1 });       }       sort(x.begin(), x.end());       lli ret = 0;       lli sum = 0, currentY = 0;       for (int i = 0; i < x.size(); i++) {          lli y = x[i][0];          x1 = x[i][1];          x2 = x[i][2];          int sig = x[i][3];          ret = add(ret, (y - currentY) * sum);          currentY = y;          for (int i = index[x1]; i < index[x2]; i++) {             count[i] += sig;          }          sum = 0;          for (int i = 0; i < count.size(); i++) {             if (count[i] > 0) {                sum += (xv[i + 1] - xv[i]);             }          }       }       return ret % m;    } }; main(){    Solution ob;    vector<vector<int>> v = {{0,0,2,2},{1,0,2,3},{1,0,3,1}};    cout << (ob.rectangleArea(v)); }  Input
{{0,0,2,2},{1,0,2,3},{1,0,3,1}} Output
6
