 
  Data Structure Data Structure
 Networking Networking
 RDBMS RDBMS
 Operating System Operating System
 Java Java
 MS Excel MS Excel
 iOS iOS
 HTML HTML
 CSS CSS
 Android Android
 Python Python
 C Programming C Programming
 C++ C++
 C# C#
 MongoDB MongoDB
 MySQL MySQL
 Javascript Javascript
 PHP PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Program to count minimum number of animals which have no predator in Python
Suppose we have a list of numbers called nums where nums[i] shows the predator of the ith animal and if there is no predator, it will hold −1. We have to find the smallest number of groups of animals such that no animal is in the same group with its direct or indirect predator.
So, if the input is like nums = [1, 2, −1, 4, 5, −1], then the output will be 3, as we can have the groups like: [0, 3], [1, 4], [2, 5].
To solve this, we will follow these steps −
-  if A is empty, then - return 0 
 
- adj := a blank map 
- vis := a new set 
- roots := a new list 
-  for each index i and value a in A, do -  if a is same as −1, then - insert i at the end of roots 
 
- insert a at the end of adj[i] 
- insert i at the end of adj[a] 
 
-  
- best := −infinity 
-  for each root in roots, do - stk := a stack and insert [root, 1] into it 
-  while stk is not empty, do - (node, d) := popped element of stk 
-  if node is in vis or node is same as −1, then - come out from the loop 
 
- best := maximum of best and d 
- insert node into vis 
-  for each u in adj[node], do - push (u, d + 1) into stk 
 
 
 
- return best 
Let us see the following implementation to get better understanding −
Example
from collections import defaultdict class Solution:    def solve(self, A):       if not A:          return 0       adj = defaultdict(list)       vis = set()       roots = []       for i, a in enumerate(A):          if a == -1:             roots.append(i)          adj[i].append(a)          adj[a].append(i)       best = −float("inf")       for root in roots:       stk = [(root, 1)]       while stk:          node, d = stk.pop()          if node in vis or node == −1:             continue          best = max(best, d)          vis.add(node)          for u in adj[node]:             stk.append((u, d + 1))    return best ob = Solution() nums = [1, 2, −1, 4, 5, −1] print(ob.solve(nums))  Input
[1, 2, −1, 4, 5, −1]
Output
3
