Program to check whether a board is valid N queens solution or not in python



Suppose we have a n x n matrix represents a chess board. There are some 1s and 0s, where 1 represents a queen and 0 represents an empty cell. We have to check whether the board is valid solution to the N-Queen puzzle or not. As we know a board is a solution of valid N-queen solution where no two queens are attacking each other.

So, if the input is like

then the output will be True

To solve this, we will follow these steps:

  • n := row count of matrix
  • rows := a new set, cols := a new set, diags := a new set, rev_diags := a new set
  • for i in range 0 to n, do
    • for j in range 0 to n, do
      • if matrix[i, j] is 1, then
        • insert i into rows
        • insert j into cols
        • insert (i - j) into diags
        • insert (i + j) into rev_diags
  • return true when size of rows, size of cols, size of diags, size of rev_diags is same as n, otherwise false

Let us see the following implementation to get better understanding:

Example

Live Demo

class Solution:    def solve(self, matrix):       n = len(matrix)       rows = set()       cols = set()       diags = set()       rev_diags = set()       for i in range(n):          for j in range(n):             if matrix[i][j]:                rows.add(i)                cols.add(j)                diags.add(i - j)                rev_diags.add(i + j)       return len(rows) == len(cols) == len(diags) == len(rev_diags) == n ob = Solution() matrix = [    [0, 0, 0, 1, 0],    [0, 1, 0, 0, 0],    [0, 0, 0, 0, 1],    [0, 0, 1, 0, 0],    [1, 0, 0, 0, 0] ] print(ob.solve(matrix))

Input

matrix = [        [0, 0, 0, 1, 0],        [0, 1, 0, 0, 0],        [0, 0, 0, 0, 1],        [0, 0, 1, 0, 0],        [1, 0, 0, 0, 0] ]

Output

True
Updated on: 2020-11-26T08:12:22+05:30

897 Views

Kickstart Your Career

Get certified by completing the course

Get Started
Advertisements