 
  Data Structure Data Structure
 Networking Networking
 RDBMS RDBMS
 Operating System Operating System
 Java Java
 MS Excel MS Excel
 iOS iOS
 HTML HTML
 CSS CSS
 Android Android
 Python Python
 C Programming C Programming
 C++ C++
 C# C#
 MongoDB MongoDB
 MySQL MySQL
 Javascript Javascript
 PHP PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Overlay an image segmentation with Numpy and Matplotlib
To overlay an image segmentation with numpy, we can take the following Steps −
- Make a masked array of 10×10 dimension. 
- Update the masked array with 1 for some region. 
- Make image data using numpy. 
- Mask an array where a condition is met, to get the masked data. 
- Create a new figure or activate an existing figure using figure() mrthod. 
- Use imshow() method to display data as an image, i.e., on a 2D regular raster. 
- To display the figure, use show() method. 
Example
from matplotlib import pyplot as plt import numpy as np plt.rcParams["figure.figsize"] = [7.00, 3.50] plt.rcParams["figure.autolayout"] = True mask = np.zeros((10, 10)) mask[3:-3, 3:-3] = 1 im = mask + np.random.randn(10, 10) * 0.01 masked = np.ma.masked_where(mask == 0, mask) plt.figure() plt.subplot(1, 2, 1) plt.imshow(im, 'gray', interpolation='none') plt.subplot(1, 2, 2) plt.imshow(im, 'gray', interpolation='none') plt.imshow(masked, 'jet', interpolation='none', alpha=0.7) plt.show()
Output

Advertisements
 