Minimum Size of Two Non-Overlapping Intervals in C++



Suppose we have a list of intervals where each interval contains the [start, end] times. We have to find the minimum total size of any two non-overlapping intervals, where the size of an interval is (end - start + 1). If we cannot find such two intervals, return 0.

So, if the input is like [[2,5],[9,10],[4,6]], then the output will be 5 as we can pick interval [4,6] of size 3 and [9,10] of size 2.

To solve this, we will follow these steps −

  • ret := inf

  • n := size of v

  • sort the array v based on the end time

  • Define an array dp of size n

  • for initialize i := 0, when i < size of v, update (increase i by 1), do −

    • low := 0, high := i - 1

    • temp := inf

    • val := v[i, 1] - v[i, 0] + 1

    • while low <= high, do

      • mid := low + (high - low) / 2

      • if v[mid, 1] >= v[i, 0], then −

        • high := mid - 1

      • Otherwise

        • temp := minimum of temp and dp[mid]

        • low := mid + 1

    • if temp is not equal to inf, then −

      • ret := minimum of ret and (temp + val)

      • dp[i] := minimum of val and temp

    • Otherwise

      • dp[i] := val

    • if i > 0, then

      • dp[i] := minimum of dp[i] and dp[i - 1]

  • return (if ret is same as inf, then 0, otherwise ret)

Let us see the following implementation to get better understanding −

Example

 Live Demo

#include <bits/stdc++.h> using namespace std; class Solution {    public:    static bool cmp(vector <int>& a, vector <int>& b){       return a[1] < b[1];    }    int solve(vector<vector<int>>& v) {       int ret = INT_MAX;       int n = v.size();       sort(v.begin(), v.end(), cmp);       vector <int> dp(n);       for(int i = 0; i < v.size(); i++){          int low = 0;          int high = i - 1;          int temp = INT_MAX;          int val = v[i][1] - v[i][0] + 1;          while(low <= high){             int mid = low + (high - low) / 2;             if(v[mid][1] >= v[i][0]){                high = mid - 1;             }else{                temp = min(temp, dp[mid]);                low = mid + 1;             }          }          if(temp != INT_MAX){             ret = min(ret, temp + val);             dp[i] = min(val, temp);          }else{             dp[i] = val;          }             if(i > 0) dp[i] = min(dp[i], dp[i - 1]);       }       return ret == INT_MAX ? 0 : ret;    } }; main(){    Solution ob;    vector<vector<int>> v = {{2,5},{9,10},{4,6}};    cout << (ob.solve(v)); }

Input

{{2,5},{9,10},{4,6}}

Output

5
Updated on: 2020-09-02T12:24:36+05:30

319 Views

Kickstart Your Career

Get certified by completing the course

Get Started
Advertisements