 
  Data Structure Data Structure
 Networking Networking
 RDBMS RDBMS
 Operating System Operating System
 Java Java
 MS Excel MS Excel
 iOS iOS
 HTML HTML
 CSS CSS
 Android Android
 Python Python
 C Programming C Programming
 C++ C++
 C# C#
 MongoDB MongoDB
 MySQL MySQL
 Javascript Javascript
 PHP PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Minimum Insertion Steps to Make a String Palindrome in C++
Suppose we have a string s, we have to make this string palindrome. in each step we can insert any character at any position, we have to find minimum number of characters that require to make this palindrome. If the string is like “mad”, then the answer will be 2 as we can add “da” before “mad”, or “am” after “mad” to make this palindrome.
To solve this, we will follow these steps −
- Define a function lcs(), this will take s, x := s
- n := size of s
- reverse the string x
- s := concatenate space before s, x := concatenate space before x
- Define one 2D array dp of size (n + 1) x (n + 1)
- for initialize i := 1, when i <= n, update (increase i by 1), do −- for initialize j := 1, when j <= n, update (increase j by 1), do −- dp[i, j] := maximum of dp[i – 1, j] and dp[i, j - 1]
- if s[i] is same as x[j], then −- dp[i, j] := maximum of dp[i, j] and dp[i – 1, j - 1] + 1
 
 
 
- for initialize j := 1, when j <= n, update (increase j by 1), do −
- return dp[n, n]
- From the main method return size of s – lcs(s)
Let us see the following implementation to get better understanding −
Example
#include <bits/stdc++.h> using namespace std; class Solution { public:    int lcs(string s){       string x = s;       int n = s.size();       reverse(x.begin(), x.end());       s = " " + s;       x = " " + x;       vector < vector <int> > dp(n + 1, vector <int>(n + 1));       for(int i = 1; i <= n; i++){          for(int j = 1; j <= n; j++){             dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);             if(s[i] == x[j]){                dp[i][j] = max(dp[i][j], dp[i - 1][j - 1] + 1);             }          }       }       return dp[n][n];    }    int minInsertions(string s) {       return s.size() - lcs(s);    } }; main(){    Solution ob;    cout << (ob.minInsertions("mad")); }  Input
“mad”
Output
2
Advertisements
 