 
  Data Structure Data Structure
 Networking Networking
 RDBMS RDBMS
 Operating System Operating System
 Java Java
 MS Excel MS Excel
 iOS iOS
 HTML HTML
 CSS CSS
 Android Android
 Python Python
 C Programming C Programming
 C++ C++
 C# C#
 MongoDB MongoDB
 MySQL MySQL
 Javascript Javascript
 PHP PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Maximum Gap in C++
Suppose we have an array, that is not sorted. We have to find the maximum difference between successive elements in its sorted form. We will return 0 if the array contains less than 2 elements. So if the array is like [12,3,9,1,17], then the output will be 6, as the sorted array will be [1,3,9,12,17] so 5 will be the maximum difference as difference between 3 and 9 is 6.
To solve this, we will follow these steps −
- minVal := inf, maxCal := -inf 
- n := size of nums 
- if n < 2, then return 0; 
-  for i in range 0 to n – 1 − - minVal := min of nums[i] and minVal 
- maxVal := max of nums[i] and maxVal 
 
- gap := celing of maxVal – minVal / n – 1 
- make one array called bucketMax of size n – 1, and fill this with –inf 
- make one array called bucketMin of size n – 1, and fill this with inf 
-  for i in range 0 to n – 1 − - x := nums[i] 
- if x = minVal or x = maxVal, then skip next part, go for next iteration 
- idx := (nums[i] – minVal) / gap. 
- bucketMax[idx] := max of bucketMax[idx] and nums[i] 
- bucketMin[idx] := min of bucketMin[idx] and nums[i] 
 
- ret := 0 
- prev := minVal 
-  for i in range 0 to n – 1 - if bucketMax[i] = -inf and bucketMin[i] = inf, then skip next part, go for next iteration 
- ret := max of ret and bucketMin[i] – prev 
- prev := bucketMax[i] 
 
- return max of ret, maxVal - prev 
Example
Let us see the following implementation to get better understanding −
#include <bits/stdc++.h> using namespace std; typedef long long int lli; class Solution {    public:    int maximumGap(vector<int>& nums) {       lli minVal = INT_MAX;       lli maxVal = INT_MIN;       int n = nums.size();       if(n < 2) return 0;       for(int i = 0; i < n; i++){          minVal = min((lli)nums[i], minVal);          maxVal = max((lli)nums[i], maxVal);       }       int gap = ceil((double)(maxVal - minVal) / (double)(n - 1));       vector <int> bucketMax(n - 1, INT_MIN);       vector <int> bucketMin(n - 1, INT_MAX);       for(int i = 0; i < n; i++){          int x = nums[i];          if(x == minVal || x == maxVal) continue;          int idx = (nums[i] - minVal) / gap;          bucketMax[idx] = max(bucketMax[idx], nums[i]);          bucketMin[idx] = min(bucketMin[idx], nums[i]);       }       lli ret = 0;       lli prev = minVal;       for(int i = 0; i < n - 1; i++){          if(bucketMax[i] == INT_MIN && bucketMin[i] == INT_MAX) continue;          ret = max(ret, bucketMin[i] - prev);          prev = bucketMax[i];       }       return max(ret, maxVal - prev);    } }; main(){    Solution ob;    vector<int> v = {12,3,9,1,17};    cout << (ob.maximumGap(v)); }  Input
[12,3,9,1,17]
Output
6
