 
  Data Structure Data Structure
 Networking Networking
 RDBMS RDBMS
 Operating System Operating System
 Java Java
 MS Excel MS Excel
 iOS iOS
 HTML HTML
 CSS CSS
 Android Android
 Python Python
 C Programming C Programming
 C++ C++
 C# C#
 MongoDB MongoDB
 MySQL MySQL
 Javascript Javascript
 PHP PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Mask rows and/or columns of a 2D array that contain masked values along axis 1 in Numpy
To mask rows and/or columns of a 2D array that contain masked values, use the np.ma.mask_rowcols() method in Numpy. The function returns a modified version of the input array, masked depending on the value of the axis parameter
Mask whole rows and/or columns of a 2D array that contain masked values. The masking behavior is selected using the axis parameter −
- If axis is None, rows and columns are masked.
- If axis is 0, only rows are masked.
- If axis is 1 or -1, only columns are masked.
Steps
At first, import the required library −
import numpy as np import numpy.ma as ma
Create an array with int elements using the numpy.array() method −
arr = np.array([[65, 68, 81], [93, 33, 39], [73, 88, 51], [62, 45, 67]]) print("Array...
", arr) print("
Array type...
", arr.dtype) Get the dimensions of the Array −
print("
Array Dimensions...
",arr.ndim) Create a masked array and mask some of them as invalid −
maskArr = ma.masked_array(arr, mask =[[1, 1, 0], [ 0, 0, 0], [0, 1, 0], [0, 1, 0]]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype) Get the dimensions of the Masked Array −
print("
Our Masked Array Dimensions...
",maskArr.ndim) Get the shape of the Masked Array −
print("
Our Masked Array Shape...
",maskArr.shape) Get the number of elements of the Masked Array −
print("
Elements in the Masked Array...
",maskArr.size)  To mask rows and/or columns of a 2D array that contain masked values, use the np.ma.mask_rowcols() −
print("
Result...
",np.ma.mask_rowcols(maskArr, axis = 1))  Example
import numpy as np import numpy.ma as ma # Create an array with int elements using the numpy.array() method arr = np.array([[65, 68, 81], [93, 33, 39], [73, 88, 51], [62, 45, 67]]) print("Array...
", arr) print("
Array type...
", arr.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr.ndim) # Create a masked array and mask some of them as invalid maskArr = ma.masked_array(arr, mask =[[1, 1, 0], [ 0, 0, 0], [0, 1, 0], [0, 1, 0]]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype) # Get the dimensions of the Masked Array print("
Our Masked Array Dimensions...
",maskArr.ndim) # Get the shape of the Masked Array print("
Our Masked Array Shape...
",maskArr.shape) # Get the number of elements of the Masked Array print("
Elements in the Masked Array...
",maskArr.size) # To mask rows and/or columns of a 2D array that contain masked values, use the np.ma.mask_rowcols() method in Numpy # The axis is set using the axis parameter print("
Result...
",np.ma.mask_rowcols(maskArr, axis = 1)) Output
Array... [[65 68 81] [93 33 39] [73 88 51] [62 45 67]] Array type... int64 Array Dimensions... 2 Our Masked Array [[-- -- 81] [93 33 39] [73 -- 51] [62 -- 67]] Our Masked Array type... int64 Our Masked Array Dimensions... 2 Our Masked Array Shape... (4, 3) Elements in the Masked Array... 12 Result... [[-- -- 81] [-- -- 39] [-- -- 51] [-- -- 67]]
