 
  Data Structure Data Structure
 Networking Networking
 RDBMS RDBMS
 Operating System Operating System
 Java Java
 MS Excel MS Excel
 iOS iOS
 HTML HTML
 CSS CSS
 Android Android
 Python Python
 C Programming C Programming
 C++ C++
 C# C#
 MongoDB MongoDB
 MySQL MySQL
 Javascript Javascript
 PHP PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
How to replace missing values with linear interpolation method in an R vector?
The linear interpolation is a method of fitting a curve using linear polynomials and it helps us to create a new data points but these points lie within the range of the original values for which the linear interpolation is done. Sometimes these values may go a little far from the original values but not too far. In R, if we have some missing values then na.approx function of zoo package can be used to replace the NA with linear interpolation method.
Example1
Loading zoo package:
> library(zoo) > x1<-sample(c(NA,2,5),10,replace=TRUE) > x1
Output
[1] 2 2 2 5 2 2 5 NA 2 5
Replacing NA with linear interpolation:
Example
> na.approx(x1)
Output
[1] 2.0 2.0 2.0 5.0 2.0 2.0 5.0 3.5 2.0 5.0
Example2
> x2<-sample(c(NA,1:4),150,replace=TRUE) > x2
Output
[1] 2 NA NA 2 1 1 NA 2 4 NA 1 2 1 4 3 3 1 3 1 4 4 2 3 1 3 [26] 1 4 2 4 2 1 2 1 3 NA 2 NA 3 1 2 3 3 3 2 4 4 3 3 4 3 [51] 1 4 3 1 4 NA NA NA 2 NA 3 4 NA 2 3 3 1 4 2 4 NA NA 4 3 2 [76] 3 NA 3 NA 4 3 2 3 NA 3 1 1 3 2 NA 1 3 3 NA 3 NA 2 NA 4 1 [101] NA 2 2 4 3 NA 4 NA 2 2 NA 3 2 NA NA 3 NA 3 1 NA 1 NA 1 NA 1 [126] 2 1 3 4 1 4 2 3 NA 3 NA NA 4 NA 2 NA 4 2 3 NA 1 2 1 3 4
Example
> na.approx(x2)
Output
[1] 2.000000 2.000000 2.000000 2.000000 1.000000 1.000000 1.500000 2.000000 [9] 4.000000 2.500000 1.000000 2.000000 1.000000 4.000000 3.000000 3.000000 [17] 1.000000 3.000000 1.000000 4.000000 4.000000 2.000000 3.000000 1.000000 [25] 3.000000 1.000000 4.000000 2.000000 4.000000 2.000000 1.000000 2.000000 [33] 1.000000 3.000000 2.500000 2.000000 2.500000 3.000000 1.000000 2.000000 [41] 3.000000 3.000000 3.000000 2.000000 4.000000 4.000000 3.000000 3.000000 [49] 4.000000 3.000000 1.000000 4.000000 3.000000 1.000000 4.000000 3.500000 [57] 3.000000 2.500000 2.000000 2.500000 3.000000 4.000000 3.000000 2.000000 [65] 3.000000 3.000000 1.000000 4.000000 2.000000 4.000000 4.000000 4.000000 [73] 4.000000 3.000000 2.000000 3.000000 3.000000 3.000000 3.500000 4.000000 [81] 3.000000 2.000000 3.000000 3.000000 3.000000 1.000000 1.000000 3.000000 [89] 2.000000 1.500000 1.000000 3.000000 3.000000 3.000000 3.000000 2.500000 [97] 2.000000 3.000000 4.000000 1.000000 1.500000 2.000000 2.000000 4.000000 [105] 3.000000 3.500000 4.000000 3.000000 2.000000 2.000000 2.500000 3.000000 [113] 2.000000 2.333333 2.666667 3.000000 3.000000 3.000000 1.000000 1.000000 [121] 1.000000 1.000000 1.000000 1.000000 1.000000 2.000000 1.000000 3.000000 [129] 4.000000 1.000000 4.000000 2.000000 3.000000 3.000000 3.000000 3.333333 [137] 3.666667 4.000000 3.000000 2.000000 3.000000 4.000000 2.000000 3.000000 [145] 2.000000 1.000000 2.000000 1.000000 3.000000 4.000000
Example3
> x3<-sample(c(NA,rnorm(5)),80,replace=TRUE) > x3
Output
[1] -0.7419539 -0.7419539 -0.7419539 -0.7419539 NA -0.2225833 [7] -0.7240064 0.8134500 -0.2225833 -0.2225833 0.8134500 -0.7419539 [13] -0.7240064 -0.7419539 -0.7240064 -0.7419539 -0.7240064 0.7383318 [19] NA -0.7240064 0.7383318 0.7383318 NA 0.8134500 [25] -0.2225833 -0.7419539 -0.2225833 0.8134500 0.8134500 NA [31] -0.2225833 -0.2225833 -0.7240064 -0.2225833 0.7383318 NA [37] NA -0.7419539 -0.7240064 -0.7240064 -0.7419539 0.7383318 [43] 0.8134500 -0.7240064 0.7383318 0.8134500 0.7383318 0.8134500 [49] 0.7383318 -0.7240064 -0.2225833 -0.7240064 -0.7240064 -0.7240064 [55] 0.7383318 0.7383318 NA -0.2225833 -0.7419539 -0.7419539 [61] 0.8134500 -0.2225833 -0.2225833 0.7383318 -0.2225833 0.8134500 [67] -0.2225833 0.7383318 -0.7240064 0.7383318 NA -0.2225833 [73] 0.7383318 -0.7419539 0.8134500 -0.2225833 NA -0.7240064 [79] -0.2225833 -0.2225833
Example
> na.approx(x3)
Output
[1] -0.741953856 -0.741953856 -0.741953856 -0.741953856 -0.482268589 [6] -0.222583323 -0.724006386 0.813450002 -0.222583323 -0.222583323 [11] 0.813450002 -0.741953856 -0.724006386 -0.741953856 -0.724006386 [16] -0.741953856 -0.724006386 0.738331799 0.007162706 -0.724006386 [21] 0.738331799 0.738331799 0.775890900 0.813450002 -0.222583323 [26] -0.741953856 -0.222583323 0.813450002 0.813450002 0.295433340 [31] -0.222583323 -0.222583323 -0.724006386 -0.222583323 0.738331799 [36] 0.244903247 -0.248525304 -0.741953856 -0.724006386 -0.724006386 [41] -0.741953856 0.738331799 0.813450002 -0.724006386 0.738331799 [46] 0.813450002 0.738331799 0.813450002 0.738331799 -0.724006386 [51] -0.222583323 -0.724006386 -0.724006386 -0.724006386 0.738331799 [56] 0.738331799 0.257874238 -0.222583323 -0.741953856 -0.741953856 [61] 0.813450002 -0.222583323 -0.222583323 0.738331799 -0.222583323 [66] 0.813450002 -0.222583323 0.738331799 -0.724006386 0.738331799 [71] 0.257874238 -0.222583323 0.738331799 -0.741953856 0.813450002 [76] -0.222583323 -0.473294855 -0.724006386 -0.222583323 -0.222583323
Example4
> x4<-sample(c(NA,rpois(20,2)),100,replace=TRUE) > x4
Output
[1] 3 3 0 2 NA 2 2 2 1 NA 0 1 3 3 3 3 1 1 3 3 1 2 1 1 2 [26] 3 5 5 0 2 1 1 3 2 1 3 2 NA 3 3 0 0 3 3 6 2 3 3 2 3 [51] 3 2 0 NA 2 NA 3 5 NA 0 3 1 5 2 1 NA 3 3 3 2 2 6 5 2 1 [76] 2 1 5 2 3 NA 0 0 2 2 2 0 5 2 3 6 0 3 3 3 3 2 2 3 1
Example
> na.approx(x4)
Output
[1] 3.0 3.0 0.0 2.0 2.0 2.0 2.0 2.0 1.0 0.5 0.0 1.0 3.0 3.0 3.0 3.0 1.0 1.0 [19] 3.0 3.0 1.0 2.0 1.0 1.0 2.0 3.0 5.0 5.0 0.0 2.0 1.0 1.0 3.0 2.0 1.0 3.0 [37] 2.0 2.5 3.0 3.0 0.0 0.0 3.0 3.0 6.0 2.0 3.0 3.0 2.0 3.0 3.0 2.0 0.0 1.0 [55] 2.0 2.5 3.0 5.0 2.5 0.0 3.0 1.0 5.0 2.0 1.0 2.0 3.0 3.0 3.0 2.0 2.0 6.0 [73] 5.0 2.0 1.0 2.0 1.0 5.0 2.0 3.0 1.5 0.0 0.0 2.0 2.0 2.0 0.0 5.0 2.0 3.0 [91] 6.0 0.0 3.0 3.0 3.0 3.0 2.0 2.0 3.0 1.0
Example5
> x5<-sample(c(NA,rpois(5,3)),100,replace=TRUE) > x5
Output
[1] 3 1 3 6 5 3 5 NA 5 5 3 1 3 1 3 NA 3 5 6 NA 3 3 5 5 3 [26] 5 NA 3 3 3 5 5 NA 5 6 3 1 3 1 3 3 5 NA 5 6 1 3 6 5 5 [51] 1 5 NA 5 NA 1 5 3 1 6 NA 5 1 5 NA NA 6 6 5 1 5 5 NA 3 5 [76] 5 5 5 1 5 NA NA 1 6 5 5 5 5 5 1 5 NA 1 NA 3 NA 3 6 5 1
Example
> na.approx(x5)
Output
[1] 3.000000 1.000000 3.000000 6.000000 5.000000 3.000000 5.000000 5.000000 [9] 5.000000 5.000000 3.000000 1.000000 3.000000 1.000000 3.000000 3.000000 [17] 3.000000 5.000000 6.000000 4.500000 3.000000 3.000000 5.000000 5.000000 [25] 3.000000 5.000000 4.000000 3.000000 3.000000 3.000000 5.000000 5.000000 [33] 5.000000 5.000000 6.000000 3.000000 1.000000 3.000000 1.000000 3.000000 [41] 3.000000 5.000000 5.000000 5.000000 6.000000 1.000000 3.000000 6.000000 [49] 5.000000 5.000000 1.000000 5.000000 5.000000 5.000000 3.000000 1.000000 [57] 5.000000 3.000000 1.000000 6.000000 5.500000 5.000000 1.000000 5.000000 [65] 5.333333 5.666667 6.000000 6.000000 5.000000 1.000000 5.000000 5.000000 [73] 4.000000 3.000000 5.000000 5.000000 5.000000 5.000000 1.000000 5.000000 [81] 3.666667 2.333333 1.000000 6.000000 5.000000 5.000000 5.000000 5.000000 [89] 5.000000 1.000000 5.000000 3.000000 1.000000 2.000000 3.000000 3.000000 [97] 3.000000 6.000000 5.000000 1.000000
Advertisements
 