How to find the statistical summary of an R data frame with all the descriptive statistics?



When we find statistical summary of an R data frame, we only get the minimum value, first quartile, median, mean, third quartile, and maximum value but in descriptive there are many other useful measures such as variance, standard deviation, skewness, kurtosis, etc. Therefore, we can use basicStats function of fBasics package for this purpose.

Loading fBasics package −

library(fBasics)

Consider mtcars data in base R −

Example

 Live Demo

data(mtcars) head(mtcars,20)

Output

          mpg    cyl     disp    hp    drat    wt qsec vs am gear carb Mazda RX4         21.0    6 160.0 110    3.90   2.620   16.46  0   1  4   4 Mazda RX4 Wag     21.0    6 160.0 110    3.90  2.875   17.02   0  1  4   4 Datsun 710        22.8    4 108.0 93     3.85  2.320   18.61   1   1   4   1 Hornet 4 Drive    21.4    6 258.0 110     3.08  3.215   19.44   1  0   3   1 Hornet Sportabout 18.7    8 360.0 175    3.15  3.440   17.02   0   0 3 2 Valiant           18.1    6 225.0 105    2.76  3.460   20.22   1 0 3 1 Duster 360        14.3    8 360.0 245    3.21  3.570   15.84   0 0 3 4 Merc 240D         24.4    4 146.7 62     3.69  3.190   20.00   1 0 4 2 Merc 230          22.8    4 140.8 95     3.92  3.150   22.90   1 0 4 2 Merc 280          19.2    6 167.6 123    3.92  3.440   18.30   1 0 4 4 Merc 280C         17.8    6 167.6 123    3.92  3.440   18.90   1 0 4 4 Merc 450SE        16.4    8 275.8 180    3.07  4.070   17.40   0 0 3 3 Merc 450SL        17.3    8 275.8 180    3.07  3.730   17.60   0 0 3 3 Merc 450SLC       15.2    8 275.8 180    3.07  3.780   18.00   0 0 3 3 Cadillac Fleetwood 10.4   8 472.0 205    2.93  5.250   17.98   0 0 3 4 Lincoln Continental 10.4  8 460.0 215    3.00  5.424   17.82    0 0 3 4 Chrysler Imperial 14.7 8  440.0 230     3.23   5.345   17.42   0 0 3 4 Fiat 128         32.4 4   78.7 66       4.08  2.200    19.47   1 1 4 1 Honda Civic      30.4 4   75.7 52       4.93  1.615    18.52   1 1 4 2 Toyota Corolla   33.9 4   71.1 65        4.22  1.835    19.90   1 1 4 1

Finding the statistical summary of mtcars data set −

>basicStats(mtcars)
               mpg        cyl        disp      hp         drat nobs       32.000000  32.000000  32.000000 32.000000 32.000000 NAs        0.000000    0.000000  0.000000 0.000000 0.000000 Minimum   10.400000   4.000000   71.100000 52.000000 2.760000 Maximum   33.900000   8.000000   472.000000 335.000000 4.930000 1. Quartile  15.425000   4.000000   120.825000 96.500000 3.080000 3. Quartile  22.800000   8.000000   326.000000 180.000000 3.920000 Mean     20.090625   6.187500   230.721875 146.687500 3.596563 Median   19.200000   6.000000   196.300000 123.000000 3.695000 Sum     642.900000   198.000000   7383.100000 4694.000000 115.090000 SE Mean  1.065424   0.315709   21.909473 12.120317 0.094519 LCL Mean    17.917679   5.543607   186.037211 121.967950 3.403790 UCL Mean     22.263571   6.831393   275.406539 171.407050 3.789335 Variance  36.324103  3.189516   15360.799829 4700.866935 0.285881 Stdev     6.026948   1.785922   123.938694 68.562868 0.534679 Skewness  0.610655   -0.174612  0.381657 0.726024 0.265904 Kurtosis  -0.372766  -1.762120 -1.207212 -0.135551 -0.714701


          wt     qsec           vs     am        gea      r carb nobs     32.000000 32.000000 32.000000 32.000000 32.000000 32.000000 NAs     0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 Minimum  1.513000 14.500000 0.000000 0.000000 3.000000 1.000000 Maximum  5.424000 22.900000 1.000000 1.000000 5.000000 8.000000 1. Quartile  2.581250 16.892500 0.000000 0.000000 3.000000 2.000000 3. Quartile  3.610000 18.900000 1.000000 1.000000 4.000000 4.000000 Mean    3.217250 17.848750 0.437500 0.406250 3.687500 2.812500 Median 3.325000 17.710000 0.000000 0.000000 4.000000 2.000000 Sum 102.952000 571.160000 14.000000 13.000000 118.000000 90.000000 SE Mean 0.172968 0.315890 0.089098 0.088210 0.130427 0.285530 LCL Mean 2.864478 17.204488 0.255783 0.226345 3.421493 2.230158 UCL Mean 3.570022 18.493012 0.619217 0.586155 3.953507 3.394842 Variance 0.957379 3.193166 0.254032 0.248992 0.544355 2.608871 Stdev 0.978457 1.786943 0.504016 0.498991 0.737804 1.615200 Skewness 0.423146 0.369045 0.240258 0.364016 0.528854 1.050874 Kurtosis -0.022711 0.335114 -2.001938 -1.924741 -1.069751 1.257043

Let’s have a look at two more examples using trees data and pressure data in base R.

The trees data example −

Example

 Live Demo

data(trees) head(trees,20)

Output

  Girth Height Volume 1  8.3   70     10.3 2  8.6   65     10.3 3  8.8   63     10.2 4  10.5  72     16.4 5  10.7  81     18.8 6  10.8  83     19.7 7  11.0  66     15.6 8  11.0  75     18.2 9  11.1  80     22.6 10 11.2  75     19.9 11 11.3  79     24.2 12 11.4  76     21.0 13 11.4  76     21.4 14 11.7  69     21.3 15 12.0  75     19.1 16 12.9  74     22.2 17 12.9  85     33.8 18 13.3  86     27.4 19 13.7  71     25.7 20 13.8  64     24.9


>basicStats(trees) Girth Height Volume nobs 31.000000 31.000000 31.000000 NAs 0.000000 0.000000 0.000000 Minimum 8.300000 63.000000 10.200000 Maximum 20.600000 87.000000 77.000000 1. Quartile 11.050000 72.000000 19.400000 3. Quartile 15.250000 80.000000 37.300000 Mean 13.248387 76.000000 30.170968 Median 12.900000 76.000000 24.200000 Sum 410.700000 2356.000000 935.300000 SE Mean 0.563626 1.144411 2.952324 LCL Mean 12.097309 73.662800 24.141517 UCL Mean 14.399466 78.337200 36.200418 Variance 9.847914 40.600000 270.202796 Stdev 3.138139 6.371813 16.437846 Skewness 0.501056 -0.356877 1.013274 Kurtosis -0.710941 -0.723368 0.246039

The pressure data example −

Example

 Live Demo

data(pressure) head(pressure,20)

Output

   temperature   pressure 1     0            0.0002 2     20           0.0012 3     40           0.0060 4     60           0.0300 5     80           0.0900 6    100           0.2700 7    120           0.7500 8    140           1.8500 9    160           4.2000 10   180           8.8000 11   200          17.3000 12   220          32.1000 13   240          57.0000 14  260           96.0000 15  280          157.0000 16  300          247.0000 17  320          376.0000 18  340          558.0000 19  360          806.0000


basicStats(pressure) temperature pressure nobs 19.000000 19.000000 NAs 0.000000 0.000000 Minimum 0.000000 0.000200 Maximum 360.000000 806.000000 1. Quartile 90.000000 0.180000 3. Quartile 270.000000 126.500000 Mean 180.000000 124.336705 Median 180.000000 8.800000 Sum 3420.000000 2362.397400 SE Mean 25.819889 51.531945 LCL Mean 125.754426 16.072107 UCL Mean 234.245574 232.601304 Variance 12666.666667 50455.285428 Stdev 112.546287 224.622540 Skewness 0.000000 1.835588 Kurtosis -1.390471 2.334429
Updated on: 2020-10-08T14:36:44+05:30

450 Views

Kickstart Your Career

Get certified by completing the course

Get Started
Advertisements