 
  Data Structure Data Structure
 Networking Networking
 RDBMS RDBMS
 Operating System Operating System
 Java Java
 MS Excel MS Excel
 iOS iOS
 HTML HTML
 CSS CSS
 Android Android
 Python Python
 C Programming C Programming
 C++ C++
 C# C#
 MongoDB MongoDB
 MySQL MySQL
 Javascript Javascript
 PHP PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
How to find the row variance of columns having same name in R matrix?
To find the row variance of columns having same name in R matrix, we can follow the below steps −
- First of all, create a matrix with some columns having same name. 
- Then, use tapply along with colnames and var function to find the row variance of columns having same name. 
Example
Create the matrix
Let’s create a matrix as shown below −
M<-matrix(rpois(100,2),ncol=4) colnames(M)<-c("x1","x1","x2","x2") M  Output
On executing, the above script generates the below output(this output will vary on your system due to randomization) −
x1 x1 x2 x2 [1,] 1 3 4 0 [2,] 1 0 2 4 [3,] 3 2 2 2 [4,] 2 1 1 0 [5,] 2 3 1 2 [6,] 0 1 3 2 [7,] 2 3 3 0 [8,] 5 2 3 1 [9,] 1 3 1 0 [10,] 1 0 2 2 [11,] 2 2 1 0 [12,] 4 2 0 0 [13,] 2 4 2 3 [14,] 0 2 2 1 [15,] 2 4 1 2 [16,] 2 1 1 2 [17,] 2 1 1 3 [18,] 0 0 1 3 [19,] 4 1 3 3 [20,] 1 3 2 0 [21,] 2 1 4 2 [22,] 1 3 3 2 [23,] 2 0 0 1 [24,] 2 1 2 1 [25,] 3 1 2 1
Find the row variance of columns having same name
Using tapply along with colnames and var function to find the row variance of columns having same name in matrix M −
M<-matrix(rpois(100,2),ncol=4) colnames(M)<-c("x1","x1","x2","x2") t(apply(M,1, function(x) tapply(x,colnames(M),var))) Output
x1 x2 [1,] 2.0 8.0 [2,] 0.5 2.0 [3,] 0.5 0.0 [4,] 0.5 0.5 [5,] 0.5 0.5 [6,] 0.5 0.5 [7,] 0.5 4.5 [8,] 4.5 2.0 [9,] 2.0 0.5 [10,] 0.5 0.0 [11,] 0.0 0.5 [12,] 2.0 0.0 [13,] 2.0 0.5 [14,] 2.0 0.5 [15,] 2.0 0.5 [16,] 0.5 0.5 [17,] 0.5 2.0 [18,] 0.0 2.0 [19,] 4.5 0.0 [20,] 2.0 2.0 [21,] 0.5 2.0 [22,] 2.0 0.5 [23,] 2.0 0.5 [24,] 0.5 0.5 [25,] 2.0 0.5
Advertisements
 