How to find the cumulative sums by using two factor columns in an R data frame?



Generally, cumulative sums are calculated for a single variable and in some cases based on a single categorical variable, there are very few situations when we want to do it for two categorical variables. If we want to find it for two categorical variables then we need to convert the data frame to a data.table object and use the cumsum function to define the column with cumulative sums.

Example

Consider the below data frame:

Live Demo

> set.seed(1361) > Factor1<-as.factor(sample(LETTERS[1:4],20,replace=TRUE)) > Factor2<-as.factor(sample(c("T1","T2","T3","T4"),20,replace=TRUE)) > Response<-rpois(20,5) > df1<-data.frame(Factor1,Factor2,Response) > df1

Output

Factor1 Factor2 Response 1 A T2 9 2 B T1 8 3 B T1 2 4 A T2 3 5 B T1 7 6 B T2 7 7 D T2 7 8 D T4 7 9 C T4 6 10 B T1 6 11 A T2 4 12 A T2 4 13 C T1 7 14 B T3 1 15 A T3 6 16 D T1 3 17 B T1 8 18 D T4 5 19 D T2 3 20 C T1 4

Loading data.table package:

> library(data.table)

Converting data frame df1 to data.table object:

> dt1<-data.table(df1)

Creating a column CumulativeSums with cumulative sums based on Factor1 and Factor2:

Example

> dt1[,CumulativeSums:=cumsum(Response),by=list(Factor1,Factor2)] > dt1

Output

Factor1 Factor2 Response CumulativeSums 1: A T2 9 9 2: B T1 8 8 3: B T1 2 10 4: A T2 3 12 5: B T1 7 17 6: B T2 7 7 7: D T2 7 7 8: D T4 7 7 9: C T4 6 6 10: B T1 6 23 11: A T2 4 16 12: A T2 4 20 13: C T1 7 7 14: B T3 1 1 15: A T3 6 6 16: D T1 3 3 17: B T1 8 31 18: D T4 5 12 19: D T2 3 10 20: C T1 4 11

Let’s have a look at another example:

Example

Live Demo

> G1<-as.factor(sample(c("Hot","Cold"),20,replace=TRUE)) > G2<-as.factor(sample(c("Low","Medium","Large"),20,replace=TRUE)) > Y<-sample(1:100,20) > df2<-data.frame(G1,G2,Y) > df2

Output

G1 G2 Y 1 Hot Medium 60 2 Cold Low 94 3 Hot Low 22 4 Cold Medium 90 5 Hot Medium 16 6 Hot Large 32 7 Cold Low 44 8 Hot Low 73 9 Hot Medium 99 10 Hot Medium 68 11 Cold Medium 41 12 Cold Large 77 13 Cold Large 48 14 Cold Medium 20 15 Cold Medium 18 16 Cold Low 12 17 Cold Low 30 18 Hot Low 23 19 Cold Medium 26 20 Cold Medium 4

Example

> dt2<-data.table(df2) > dt2[,CumulativeSums:=cumsum(Y),by=list(G1,G2)] > dt2

Output

G1 G2 Y CumulativeSums 1: Hot Medium 60 60 2: Cold Low 94 94 3: Hot Low 22 22 4: Cold Medium 90 90 5: Hot Medium 16 76 6: Hot Large 32 32 7: Cold Low 44 138 8: Hot Low 73 95 9: Hot Medium 99 175 10: Hot Medium 68 243 11: Cold Medium 41 131 12: Cold Large 77 77 13: Cold Large 48 125 14: Cold Medium 20 151 15: Cold Medium 18 169 16: Cold Low 12 150 17: Cold Low 30 180 18: Hot Low 23 118 19: Cold Medium 26 195 20: Cold Medium 4 199
Updated on: 2020-11-07T07:29:30+05:30

390 Views

Kickstart Your Career

Get certified by completing the course

Get Started
Advertisements