 
  Data Structure Data Structure
 Networking Networking
 RDBMS RDBMS
 Operating System Operating System
 Java Java
 MS Excel MS Excel
 iOS iOS
 HTML HTML
 CSS CSS
 Android Android
 Python Python
 C Programming C Programming
 C++ C++
 C# C#
 MongoDB MongoDB
 MySQL MySQL
 Javascript Javascript
 PHP PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
How to divide data frame row values by row variance in R?
To divide data frame row values by row variance R, we can follow the below steps −
- First of all, create a data frame.
- Then, use apply function to divide the data frame row values by row variance.
Create the data frame
Let's create a data frame as shown below −
x<-rpois(25,1) y<-rpois(25,1) z<-rpois(25,1) df<-data.frame(x,y,z) df
On executing, the above script generates the below output(this output will vary on your system due to randomization) −
x y z 1 1 1 1 2 4 0 0 3 0 3 0 4 2 1 0 5 1 0 0 6 1 1 1 7 1 3 2 8 1 1 2 9 0 1 1 10 1 1 1 11 3 0 3 12 3 0 1 13 4 2 0 14 1 0 0 15 2 1 1 16 2 0 0 17 3 2 1 18 0 0 0 19 1 0 2 20 0 1 2 21 1 0 1 22 0 1 2 23 1 0 0 24 0 2 2 25 2 1 1
Divide the data frame row values by row variance
Using apply function to divide the row values of df by row variance −
x<-rpois(25,1) y<-rpois(25,1) z<-rpois(25,1) df<-data.frame(x,y,z) df_new<-t(apply(df,1, function(x) x/var(x))) df_new
Output
x y z [1,] Inf Inf Inf [2,] 0.750000 0.0 0.0000000 [3,] 0.000000 1.0 0.0000000 [4,] 2.000000 1.0 0.0000000 [5,] 3.000000 0.0 0.0000000 [6,] Inf Inf Inf [7,] 1.000000 3.0 2.0000000 [8,] 3.000000 3.0 6.0000000 [9,] 0.000000 3.0 3.0000000 [10,] Inf Inf Inf [11,] 1.000000 0.0 1.0000000 [12,] 1.285714 0.0 0.4285714 [13,] 1.000000 0.5 0.0000000 [14,] 3.000000 0.0 0.0000000 [15,] 6.000000 3.0 3.0000000 [16,] 1.500000 0.0 0.0000000 [17,] 3.000000 2.0 1.0000000 [18,] NaN NaN NaN [19,] 1.000000 0.0 2.0000000 [20,] 0.000000 1.0 2.0000000 [21,] 3.000000 0.0 3.0000000 [22,] 0.000000 1.0 2.0000000 [23,] 3.000000 0.0 0.0000000 [24,] 0.000000 1.5 1.5000000 [25,] 6.000000 3.0 3.0000000
Advertisements
 