 
  Data Structure Data Structure
 Networking Networking
 RDBMS RDBMS
 Operating System Operating System
 Java Java
 MS Excel MS Excel
 iOS iOS
 HTML HTML
 CSS CSS
 Android Android
 Python Python
 C Programming C Programming
 C++ C++
 C# C#
 MongoDB MongoDB
 MySQL MySQL
 Javascript Javascript
 PHP PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
How to create group names for consecutively duplicate values in an R data frame column?
The grouping of values can be done in many ways and one such way is if we have duplicate values or unique values then the group can be set based on that. If all the values are unique then there is no sense for grouping but if we have varying values then the grouping can be done. For this purpose, we can use rleid function as shown in the below examples.
Example1
Consider the below data frame −
> x<-sample(0:2,20,replace=TRUE) > df1<-data.frame(x) > df1
Output
x 1 2 2 1 3 2 4 2 5 1 6 0 7 1 8 1 9 1 10 1 11 0 12 0 13 1 14 2 15 1 16 0 17 1 18 0 19 1 20 2
Creating the groups for values in x −
> df1$Grp<-paste0("Grp",rleid(df1$x)) > df1 Output
x Grp 1 2 Grp1 2 1 Grp2 3 2 Grp3 4 2 Grp3 5 1 Grp4 6 0 Grp5 7 1 Grp6 8 1 Grp6 9 1 Grp6 10 1 Grp6 11 0 Grp7 12 0 Grp7 13 1 Grp8 14 2 Grp9 15 1 Grp10 16 0 Grp11 17 1 Grp12 18 0 Grp13 19 1 Grp14 20 2 Grp15
Example2
> y<-sample(0:1,20,replace=TRUE) > df2<-data.frame(y) > df2
Output
y 1 0 2 1 3 0 4 1 5 1 6 1 7 0 8 0 9 0 10 1 11 0 12 0 13 0 14 0 15 0 16 1 17 1 18 1 19 1 20 0
Creating the groups for values in y −
> df2$Category<-paste0("Category#",rleid(df2$y)) > df2  Output
y Category 1 0 Category#1 2 1 Category#2 3 0 Category#3 4 1 Category#4 5 1 Category#4 6 1 Category#4 7 0 Category#5 8 0 Category#5 9 0 Category#5 10 1 Category#6 11 0 Category#7 12 0 Category#7 13 0 Category#7 14 0 Category#7 15 0 Category#7 16 1 Category#8 17 1 Category#8 18 1 Category#8 19 1 Category#8 20 0 Category#9
Advertisements
 