 
  Data Structure Data Structure
 Networking Networking
 RDBMS RDBMS
 Operating System Operating System
 Java Java
 MS Excel MS Excel
 iOS iOS
 HTML HTML
 CSS CSS
 Android Android
 Python Python
 C Programming C Programming
 C++ C++
 C# C#
 MongoDB MongoDB
 MySQL MySQL
 Javascript Javascript
 PHP PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Find the largest Perfect Subtree in a given Binary Tree in Python
Suppose we have a given Binary Tree; we have to find the size of largest Perfect sub-tree in that given Binary Tree. As we know the perfect binary tree is a binary tree in which all internal nodes have two children and all leaves are at the identical level.
So, if the input is like

then the output will be 3, and the subtree is

To solve this, we will follow these steps −
- Define one block called RetType, this will hold isPerfect, height and rootTree, they are all initially 0 
- Define a function called get_prefect_subtree(), this takes root 
- r_type := a new RetType 
-  if root is same as None, then - r_type.isPerfect := True 
- r_type.height := 0 
- r_type.rootTree := null 
- return r_type 
 
- left_subtree := get_prefect_subtree(root.left) 
- right_subtree := get_prefect_subtree(root.right) 
-  if left_subtree is perfect and right_subtree is perfect and height of left_subtree is same as height of right_subtree, then - height of r_type := height of left_subtree + 1 
- set r_type is perfect 
- r_type.rootTree := root 
- return r_type 
 
- set r_type is not perfect 
- r_type.height := maximum of height of left_subtree, height of right_subtree 
-  if height of left_subtree > height of right_subtree, then - r_type.rootTree := left_subtree.rootTree 
 
-  otherwise, - r_type.rootTree := right_subtree.rootTree 
 
- return r_type 
Example
Let us see the following implementation to get better understanding −
class TreeNode:    def __init__(self, data, left = None, right = None):       self.data = data       self.left = left       self.right = right def print_tree(root):    if root is not None:       print_tree(root.left)       print(root.data, end = ', ')       print_tree(root.right) class RetType:    def __init__(self):       isPerfect = 0       height = 0       rootTree = 0 def get_prefect_subtree(root):    r_type = RetType()    if (root == None) :       r_type.isPerfect = True       r_type.height = 0       r_type.rootTree = None       return r_type    left_subtree = get_prefect_subtree(root.left)    right_subtree = get_prefect_subtree(root.right)    if (left_subtree.isPerfect and right_subtree.isPerfect and left_subtree.height == right_subtree.height) :       r_type.height = left_subtree.height + 1       r_type.isPerfect = True       r_type.rootTree = root       return r_type    r_type.isPerfect = False    r_type.height = max(left_subtree.height, right_subtree.height)    if (left_subtree.height > right_subtree.height ):       r_type.rootTree = left_subtree.rootTree    else :       r_type.rootTree = right_subtree.rootTree    return r_type root = TreeNode(2) root.left = TreeNode(3) root.right = TreeNode(4) root.left.left = TreeNode(5) root.left.right = TreeNode(6) root.right.left = TreeNode(7) res = get_prefect_subtree(root) h = res.height print ("Size: " , pow(2, h) - 1) print ("Tree: ", end = " ") print_tree(res.rootTree)  Input
root = TreeNode(2) root.left = TreeNode(3) root.right = TreeNode(4) root.left.left = TreeNode(5) root.left.right = TreeNode(6) root.right.left = TreeNode(7)
Output
Size: 3 Tree: 5, 3, 6,
