 
  Data Structure Data Structure
 Networking Networking
 RDBMS RDBMS
 Operating System Operating System
 Java Java
 MS Excel MS Excel
 iOS iOS
 HTML HTML
 CSS CSS
 Android Android
 Python Python
 C Programming C Programming
 C++ C++
 C# C#
 MongoDB MongoDB
 MySQL MySQL
 Javascript Javascript
 PHP PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Convert a Binary Tree into its Mirror Tree in C++
In this tutorial, we will be discussing a program to convert a binary tree into its mirror tree.
For this, we will be provided with a binary tree. Our task will be to swap the values on the left and the right end creating a mirror tree from the given binary tree.
Example
#include<bits/stdc++.h> using namespace std; //binary tree node structure struct Node{    int data;    struct Node* left;    struct Node* right; }; //creation of a new node with no child nodes struct Node* newNode(int data){    struct Node* node = (struct Node*)malloc(sizeof(struct Node));    node->data = data;    node->left = NULL;    node->right = NULL;    return(node); } void mirror(struct Node* node){    if (node == NULL)       return;    else{       struct Node* temp;       //swapping the subtrees       mirror(node->left);       mirror(node->right);       temp = node->left;       node->left = node->right;       node->right = temp;    } } //printing the inorder traversal void print_tree(struct Node* node){    if (node == NULL)       return;    print_tree(node->left);    cout << node->data << " ";    print_tree(node->right); } int main(){    struct Node *root = newNode(1);    root->left = newNode(2);    root->right = newNode(3);    root->left->left = newNode(4);    root->left->right = newNode(5);    //printing the initial tree    cout << "Inorder traversal of the constructed" << endl;    print_tree(root);    mirror(root);    //printing the mirror tree    cout << "\nInorder traversal of the mirror tree" << endl;    print_tree(root);    return 0; }  Output
Inorder traversal of the constructed 4 2 5 1 3 Inorder traversal of the mirror tree 3 1 5 2 4
Advertisements
 