 
  Data Structure Data Structure
 Networking Networking
 RDBMS RDBMS
 Operating System Operating System
 Java Java
 MS Excel MS Excel
 iOS iOS
 HTML HTML
 CSS CSS
 Android Android
 Python Python
 C Programming C Programming
 C++ C++
 C# C#
 MongoDB MongoDB
 MySQL MySQL
 Javascript Javascript
 PHP PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Compute the truth value of an array XOR another array element-wise in Numpy
To compute the truth value of an array XOR another array element-wise, use the numpy.logical_xor() method in Python Numpy. Return value is either True or False. Return value is the Boolean result of the logical XOR operation applied to the elements of x1 and x2; the shape is determined by broadcasting. This is a scalar if both x1 and x2 are scalars.
The out is a location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs.
Steps
At first, import the required library −
import numpy as np
Creating two 2D numpy array using the array() method. We have inserted elements −
arr1 = np.array([[True, False, False],[False, True, True]]) arr2 = np.array([[True, False, True],[True, True, False]])
Display the arrays −
print("Array 1...
", arr1) print("
Array 2...
", arr2) Get the type of the arrays −
print("
Our Array 1 type...
", arr1.dtype) print("
Our Array 2 type...
", arr2.dtype) Get the dimensions of the Arrays −
print("
Our Array 1 Dimensions...
",arr1.ndim) print("
Our Array 2 Dimensions...
",arr2.ndim) Get the shape of the Arrays −
print("
Our Array 1 Shape...
",arr1.shape) print("
Our Array 2 Shape...
",arr2.shape) To compute the truth value of an array XOR another array element-wise, use the numpy.logical_xor() method. Return value is either True or False −
print("
Result (XOR)...
",np.logical_xor(arr1, arr2))   Example
import numpy as np # Creating two 2D numpy array using the array() method # We have inserted elements arr1 = np.array([[True, False, False],[False, True, True]]) arr2 = np.array([[True, False, True], [True, True, False]]) # Display the arrays print("Array 1...
", arr1) print("
Array 2...
", arr2) # Get the type of the arrays print("
Our Array 1 type...
", arr1.dtype) print("
Our Array 2 type...
", arr2.dtype) # Get the dimensions of the Arrays print("
Our Array 1 Dimensions...
",arr1.ndim) print("
Our Array 2 Dimensions...
",arr2.ndim) # Get the shape of the Arrays print("
Our Array 1 Shape...
",arr1.shape) print("
Our Array 2 Shape...
",arr2.shape) # To compute the truth value of an array XOR another array elementwise, use the numpy.logical_xor() method in Python Numpy # Return value is either True or False print("
Result (XOR)...
",np.logical_xor(arr1, arr2)) Output
Array 1... [[ True False False] [False True True]] Array 2... [[ True False True] [ True True False]] Our Array 1 type... bool Our Array 2 type... bool Our Array 1 Dimensions... 2 Our Array 2 Dimensions... 2 Our Array 1 Shape... (2, 3) Our Array 2 Shape... (2, 3) Result (XOR)... [[False False True] [ True False True]]
