 
  Data Structure Data Structure
 Networking Networking
 RDBMS RDBMS
 Operating System Operating System
 Java Java
 MS Excel MS Excel
 iOS iOS
 HTML HTML
 CSS CSS
 Android Android
 Python Python
 C Programming C Programming
 C++ C++
 C# C#
 MongoDB MongoDB
 MySQL MySQL
 Javascript Javascript
 PHP PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Compute the median of the masked array elements along specified axis in Numpy
To compute the median of the masked array elements along specific axis, use the MaskedArray.median() method in Python Numpy −
- The axis is set using the "axis" parameter
- The axis is axis along which the medians are computed.
- The default (None) is to compute the median along a flattened version of the array.
The overwrite_input parameter, if True, then allow use of memory of input array (a) for calculations. The input array will be modified by the call to median. This will save memory when you do not need to preserve the contents of the input array. Treat the input as undefined, but it will probably be fully or partially sorted. Default is False. Note that, if overwrite_input is True, and the input is not already an ndarray, an error will be raised.
Steps
At first, import the required library −
import numpy as np import numpy.ma as ma
Create an array with int elements using the numpy.array() method −
arr = np.array([[65, 68, 81], [93, 33, 76], [73, 88, 51], [62, 45, 67]]) print("Array...
", arr) Create a masked array and mask some of them as invalid −
maskArr = ma.masked_array(arr, mask =[[1, 1, 0], [ 0, 0, 0], [0, 1, 0], [0, 1, 0]]) print("
Our Masked Array...
", maskArr) Get the type of the masked array −
print("
Our Masked Array type...
", maskArr.dtype)  Get the dimensions of the Masked Array −
print("
Our Masked Array Dimensions...
",maskArr.ndim) Get the shape of the Masked Array −
print("
Our Masked Array Shape...
",maskArr.shape)  Get the number of elements of the Masked Array −
print("
Number of elements in the Masked Array...
",maskArr.size) To compute the median of the masked array elements along specific axis, use the MaskedArray.median() method. The axis is set using the "axis" parameter. The axis is axis along which the medians are computed. The default (None) is to compute the median along a flattened version of the array −
resArr = np.ma.median(maskArr, axis = 1) print("
Resultant Array..
.", resArr)  Example
import numpy as np import numpy.ma as ma # Create an array with int elements using the numpy.array() method arr = np.array([[65, 68, 81], [93, 33, 76], [73, 88, 51], [62, 45, 67]]) print("Array...
", arr) # Create a masked array and mask some of them as invalid maskArr = ma.masked_array(arr, mask =[[1, 1, 0], [ 0, 0, 0], [0, 1, 0], [0, 1, 0]]) print("
Our Masked Array...
", maskArr) # Get the type of the masked array print("
Our Masked Array type...
", maskArr.dtype) # Get the dimensions of the Masked Array print("
Our Masked Array Dimensions...
",maskArr.ndim) # Get the shape of the Masked Array print("
Our Masked Array Shape...
",maskArr.shape) # Get the number of elements of the Masked Array print("
Number of elements in the Masked Array...
",maskArr.size) # To compute the median of the masked array elements along specific axis, use the MaskedArray.median() method in Python Numpy # The axis is set using the "axis" parameter # The axis is axis along which the medians are computed. # The default (None) is to compute the median along a flattened version of the array. resArr = np.ma.median(maskArr, axis = 1) print("
Resultant Array..
.", resArr) Output
Array... [[65 68 81] [93 33 76] [73 88 51] [62 45 67]] Our Masked Array... [[-- -- 81] [93 33 76] [73 -- 51] [62 -- 67]] Our Masked Array type... int64 Our Masked Array Dimensions... 2 Our Masked Array Shape... (4, 3) Number of elements in the Masked Array... 12 Resultant Array.. . [81.0 76.0 62.0 64.5]
