Largest Sum Contiguous Subarray



An array of integers is given. We have to find the sum of all elements which are contiguous, whose sum is largest, that will be sent as output.

Using dynamic programming we will store the maximum sum up to current term. It will help to find the sum for contiguous elements in the array.

Input and Output

Input: An array of integers. {-2, -3, 4, -1, -2, 1, 5, -3} Output: Maximum Sum of the Subarray is: 7

Algorithm

maxSum(array, n)

Input − The main array, the size of the array.

Output − maximum sum.

Begin    tempMax := array[0]    currentMax = tempMax    for i := 1 to n-1, do       currentMax = maximum of (array[i] and currentMax+array[i])       tempMax = maximum of (currentMax and tempMax)    done    return tempMax End

Example

#include<iostream> using namespace std; int maxSum( int arr[], int n) {    int tempMax = arr[0];    int currentMax = tempMax;    for (int i = 1; i < n; i++ ) { //find the max value       currentMax = max(arr[i], currentMax+arr[i]);       tempMax = max(tempMax, currentMax);    }    return tempMax; } int main() {    int arr[] = {-2, -3, 4, -1, -2, 1, 5, -3};    int n = 8;    cout << "Maximum Sum of the Sub-array is: "<< maxSum( arr, n ); }

Output

Maximum Sum of the Sub-array is: 7
Updated on: 2020-06-16T15:40:34+05:30

832 Views

Kickstart Your Career

Get certified by completing the course

Get Started
Advertisements