🔥 What's New • ⚡ Quick Start • 🌟 Trending • 📚 Categories • 🤝 Contributing
Last Updated: 2025-01-08 | Code Snippets: 500+ | Resources: 1000+ | Categories: 20+
| 🎯 Category | 🚀 Latest Additions | ⭐ Stars | 📅 Added |
|---|---|---|---|
| 🤖 AI Agents | ElizaOS - Autonomous AI agents with personalities | 25K+ | 2025-Q1 |
| 💻 Coding Agents | Cline - IDE-based autonomous coding | 15K+ | 2025-Q1 |
| 🧠 LLM Tools | DeepSeek-R1 - Open-source frontier model | 30K+ | 2025-Q1 |
| 🌐 Browser Automation | Browser Use - Open-source browser automation | 10K+ | 2025-Q1 |
| 📝 Content Generation | STORM - Wikipedia-style article generator | 8K+ | 2024-Q4 |
Comprehensive Quality Assurance Completed (2025-01-08):
| Mermaid Diagrams | Python Snippets | JavaScript/TS | Config Files | Files Transformed |
pie title "Code Quality Distribution" "Perfect (100%)" : 264 "Excellent (99%+)" : 590 "Very Good (97%+)" : 138 "Fixed Issues" : 5 Quality Reports:
- 📋 Production Test Report - Comprehensive testing results
- 📚 Lessons Learned - Transformation insights & best practices
- 📝 Changelog - Complete version history
- 📊 Quality Enhancement Report - Detailed file analysis
| Copy, adapt, ship! Each snippet includes error handling, logging, and configuration. | Quality over quantity. Only the best 2024-2025 resources with context on why they matter. | Start with your problem, find the solution, then dive deeper into theory. |
graph LR A[🎯 Your Problem] --> B{What do you need?} B -->|Theory| C[📖 Read README] B -->|Quick Solution| D[⚡ Code Snippets] B -->|Full System| E[🏗️ Examples] C --> F[✨ Learn & Understand] D --> G[🚀 Copy & Deploy] E --> H[🏭 Production Ready] style A fill:#a855f7,stroke:#7e22ce,stroke-width:3px,color:#fff style B fill:#3b82f6,stroke:#1d4ed8,stroke-width:2px,color:#fff style C fill:#10b981,stroke:#059669,stroke-width:2px,color:#fff style D fill:#f59e0b,stroke:#d97706,stroke-width:2px,color:#fff style E fill:#ef4444,stroke:#dc2626,stroke-width:2px,color:#fff | Project | Description | Stars | Use Case |
|---|---|---|---|
| ElizaOS 🔥 | Multi-platform AI agents with personality | Discord, Twitter, Telegram bots | |
| Cline 💻 | Autonomous coding in your IDE | Code generation & editing | |
| AutoGPT 🧠 | Autonomous AI agent framework | Complex workflow automation | |
| Browser Use 🌐 | Open-source browser automation | Web scraping & automation | |
| STORM 📝 | Wikipedia-style content generation | Research & article writing |
| Model | Provider | Context Window | Key Features | Best For |
|---|---|---|---|---|
| GPT-4o | OpenAI | 128K | Multimodal (text, image, audio) | General purpose, creativity |
| Claude 4 Sonnet | Anthropic | 1M tokens 🔥 | Extended context, coding | Long documents, coding |
| Gemini 2.5 Pro | 2M tokens 🔥 | Multimodal leader | Video analysis, research | |
| DeepSeek-R1 | DeepSeek | 128K | Open-source, competitive | Cost-effective, local |
| Llama 4 | Meta | 128K | Open-source, customizable | Fine-tuning, privacy |
| Framework | Market Share | Key Feature | GitHub Stars |
|---|---|---|---|
| LangChain | 30% | Modular LLM framework | |
| LangGraph 🔥 | - | Stateful multi-agent graphs | |
| CrewAI | 20% | Role-based team agents | |
| AutoGen | - | Microsoft multi-agent framework | |
| Haystack | - | NLP pipelines & RAG |
| Tool | Category | What's Hot | GitHub |
|---|---|---|---|
| Cursor | AI IDE | AI-first code editor | - |
| Windsurf | AI IDE | VS Code + AI superpowers | - |
| Next.js 15 🔥 | Framework | React meta-framework | |
| Astro | Framework | Content-focused sites | |
| shadcn/ui | UI Library | Beautiful React components |
| Resource | Stars | Focus | Level |
|---|---|---|---|
| Made With ML | Production ML lifecycle | 🔴 Advanced | |
| Neural Networks Zero to Hero | Build from scratch | 🟡 Intermediate | |
| ML For Beginners | 12-week ML course | 🟢 Beginner | |
| 100 Days of ML Code | Structured learning plan | 🟢 Beginner | |
| InterpretML | Model interpretability | 🔴 Advanced |
graph TD A[🏠 Category] --> B[📖 README.md<br/>Pure Resources & Theory] A --> C[⚡ code-snippets/<br/>Quick Solutions 20-30 lines] A --> D[🏗️ examples/<br/>Full Systems 100+ lines] B --> E[📚 Learning Paths] B --> F[🔗 Curated Links] B --> G[📄 Research Papers] C --> H[🔌 Connections] C --> I[🛠️ Tools] C --> J[📊 Data Patterns] D --> K[🏭 Production Servers] D --> L[💻 Client Examples] D --> M[🔗 Integrations] style A fill:#a855f7,stroke:#7e22ce,stroke-width:4px,color:#fff style B fill:#10b981,stroke:#059669,stroke-width:2px style C fill:#f59e0b,stroke:#d97706,stroke-width:2px style D fill:#ef4444,stroke:#dc2626,stroke-width:2px | ❌ Mixed theory & code chaos ❌ Monolithic examples ❌ Hard to maintain ❌ Difficult to navigate ❌ LLM-unfriendly structure | ✅ Clear separation: Theory vs Code ✅ Modular snippets ✅ Update one file, not entire docs ✅ Problem → Solution mapping ✅ LLM-optimized structure |
| Icon | Category | Code Snippets | Resources | Updated |
|---|---|---|---|---|
| 🔌 | Model Context Protocol (MCP) | 50+ | 100+ | 2025-Q1 🔥 |
| 🤖 | Large Language Models | 80+ | 150+ | 2025-Q1 |
| 🤖 | AI Agents & Automation | 60+ | 120+ | 2025-Q1 🔥 |
| 👁️ | Computer Vision | 100+ | 200+ | 2024-Q4 |
| 🎨 | Generative AI | 70+ | 130+ | 2024-Q4 |
| Icon | Category | Code Snippets | Resources | Level |
|---|---|---|---|---|
| 🧠 | Deep Learning Fundamentals | 90+ | 180+ | 🟢🟡 |
| 🔐 | Biometrics & Security | 50+ | 100+ | 🔴 |
| 🎵 | Audio & Speech Processing | 40+ | 80+ | 🟡 |
| 🎮 | Reinforcement Learning | 30+ | 60+ | 🔴 |
| ⚛️ | Quantum Machine Learning | 20+ | 40+ | 🔴 |
| Icon | Category | Code Snippets | Resources | Focus |
|---|---|---|---|---|
| 🚀 | MLOps & Production | 60+ | 120+ | DevOps |
| 📱 | Mobile & Edge AI | 50+ | 100+ | Optimization |
| 🤖 | AutoML & NAS | 40+ | 80+ | Automation |
| 📈 | Time Series Analysis | 35+ | 70+ | Forecasting |
| 🕸️ | Graph Neural Networks | 25+ | 50+ | Graphs |
| Icon | Category | Resources | Topics |
|---|---|---|---|
| 📚 | Learning Resources | 200+ | Books, Courses, Tutorials |
| 💼 | Interview & Career | 150+ | FAANG Prep, ML Interviews |
| 🔧 | Tools & Frameworks | 180+ | Development Tools |
MCP (Model Context Protocol) is the universal standard enabling LLMs to dynamically access tools and data sources.
|
|
- MCP Complete Guide - Basics to advanced patterns
- 50+ MCP Server Examples - Production-ready implementations
- MCP Client Development - Build AI agents with MCP
# Problem: Give LLM real-time weather access from mcp import MCPServer, Tool class WeatherMCP(MCPServer): @Tool(name="get_weather", description="Get current weather") async def get_weather(self, location: str) -> dict: # Real-time weather API integration return await fetch_weather(location) # Now any MCP-compatible LLM can access weather data!| Resource | Description | Level |
|---|---|---|
| Awesome LLM Resources | Complete LLM ecosystem guide | 🟢 All |
| LLM Fine-tuning | PEFT, LoRA, QLoRA techniques | 🔴 Advanced |
| LLM Tricks & Optimization | Prompt engineering, caching | 🟡 Intermediate |
| RAG Systems 🔥 | Retrieval-augmented generation | 🟡 Intermediate |
| LLM Evaluation 🔥 | Benchmarks, metrics, testing | 🔴 Advanced |
graph LR A[LLM Application] --> B[LangChain] A --> C[LlamaIndex] A --> D[Haystack] B --> E[LangGraph] C --> F[RAG Pipelines] D --> G[NLP Pipelines] style A fill:#a855f7,stroke:#7e22ce,stroke-width:3px,color:#fff style E fill:#10b981,stroke:#059669,stroke-width:2px style F fill:#f59e0b,stroke:#d97706,stroke-width:2px style G fill:#3b82f6,stroke:#1d4ed8,stroke-width:2px
|
|
|
- SAM Foundation Models - Segment Anything ecosystem
- Video Segmentation - State-of-the-art video segmentation
- 3D Computer Vision - 3D reconstruction & NeRF
- Interactive Segmentation - User-guided segmentation
| Model | Release | Key Features | Use Case |
|---|---|---|---|
| Stable Diffusion 3 🔥 | 2024 | Better text, coherence | General purpose |
| SDXL Turbo | 2024 | 1-step generation | Real-time apps |
| DALL-E 3 | 2024 | Natural language prompts | Creative content |
| Midjourney v6 | 2024 | Photorealistic quality | Professional art |
| Flux 🔥 | 2024 | Open-source, high quality | Customization |
- Stable Diffusion & GANs - Complete SD guide
- ComfyUI Beyond - Advanced workflows
- Image Enhancement - Upscaling & restoration
- ControlNet Guide 🔥 - Precise control methods
|
|
|
|
| Framework | Platform | Speedup | Model Size |
|---|---|---|---|
| TensorFlow Lite | iOS, Android | 3-5x | 75% smaller |
| ONNX Runtime | Cross-platform | 2-4x | 50% smaller |
| NCNN | Mobile optimized | 4-6x | 80% smaller |
| MNN | Alibaba mobile | 3-5x | 70% smaller |
| Core ML | iOS only | 5-7x | Native |
- Mobile AI Apps - iOS & Android development
- NCNN Collection - NCNN framework guide
- Edge Computing - Tiny ML & embedded systems
- ONNX & TensorRT - Optimization techniques
flowchart TD A[🎯 Start Here] --> B{What's your goal?} B -->|🎓 Learn Theory| C[📖 Open Category README] C --> C1[Read curated resources] C --> C2[Follow learning path] C --> C3[Understand concepts] B -->|⚡ Quick Solution| D[💡 Browse code-snippets/] D --> D1[Find your problem] D --> D2[Copy code snippet] D --> D3[Adapt & deploy] B -->|🏗️ Build System| E[🏭 Check examples/] E --> E1[Find similar project] E --> E2[Study architecture] E --> E3[Clone & customize] B -->|🔥 Latest Trends| F[🌟 Trending Section] F --> F1[Explore 2024-2025 tools] F --> F2[Try new frameworks] F --> F3[Stay updated] style A fill:#a855f7,stroke:#7e22ce,stroke-width:4px,color:#fff style B fill:#3b82f6,stroke:#1d4ed8,stroke-width:3px,color:#fff style C fill:#10b981,stroke:#059669,stroke-width:2px style D fill:#f59e0b,stroke:#d97706,stroke-width:2px style E fill:#ef4444,stroke:#dc2626,stroke-width:2px style F fill:#ec4899,stroke:#be185d,stroke-width:2px | Step 1: Read theory → Step 2: Get quick code → Step 3: Full implementation → Time to deploy: 30 minutes ⚡ | Step 1: Learn MLOps basics → Step 2: Choose serving method → Step 3: Production setup → Time to deploy: 2 hours ⚡ |
| Metric | Current | 3-Month Goal | 1-Year Goal |
|---|---|---|---|
| ⭐ GitHub Stars | Growing | 1,000+ | 10,000+ |
| 📁 Categories | 20+ | 30+ | 50+ |
| 💻 Code Snippets | 500+ | 1,000+ | 3,000+ |
| 📚 Resources | 1,000+ | 2,000+ | 5,000+ |
| 🤝 Contributors | 5+ | 50+ | 500+ |
| ⚡ Time to Solution | <2 min | <1 min | <30 sec |
| ✅ Solves real problem ✅ Production-ready ✅ Error handling included ✅ Clear documentation ✅ 20-30 lines max | ✅ High-quality source ✅ Currently relevant (2024-2025) ✅ Explains why it matters ✅ Working links ✅ No duplicates |
- Fork the repository
- Create a feature branch (
git checkout -b feature/AmazingFeature) - Add your content following our format
- Commit your changes (
git commit -m 'Add AmazingFeature') - Push to the branch (
git push origin feature/AmazingFeature) - Open a Pull Request
📖 Read our comprehensive guides:
- CONTRIBUTING.md - Detailed contribution guidelines
- CHANGELOG.md - Version history and changes
- LESSONS_LEARNED.md - Best practices and insights
Complete documentation for repository usage and development:
| Document | Description | Purpose |
|---|---|---|
| README.md | Main repository overview | Navigation & quick start |
| CONTRIBUTING.md | Contribution guidelines | Code standards & workflow |
| CHANGELOG.md | Version history | Track all changes |
| LESSONS_LEARNED.md | Transformation insights | Best practices & learnings |
| PRODUCTION_TEST_REPORT.md | Quality assurance | Testing results & validation |
| QUALITY_ENHANCEMENT_REPORT.md | Quality analysis | File-by-file metrics |
Documentation Quality:
- ✅ 100% code examples validated
- ✅ 135 Mermaid diagrams (0 errors)
- ✅ 2,700+ lines of production code
- ✅ 97.2% contains 2024-2025 content
- ✅ Comprehensive testing performed
See CONTRIBUTING.md for detailed guidelines.
- ✅ Modular structure (README + snippets + examples)
- ✅ Clear theory/practice separation
- ✅ Scalable architecture
- 🔄 1,000+ code snippets
- 🔄 2,000+ curated resources
- 🔄 All categories with 2024-2025 content
- 🔄 Difficulty levels (🟢🟡🔴)
- 📅 Interactive code playground
- 📅 AI-powered search
- 📅 Automated quality checks
- 📅 Community contribution portal
- 📅 LLM-powered snippet recommendations
- 📅 Personalized learning paths
- 📅 IDE integrations (VS Code, JetBrains)
- 📅 Real-time trend tracking
This repository is licensed under the MIT License - see the LICENSE file for details.
| Developers find solutions in seconds, not hours | 2024-2025 trending tech & resources | Copy, adapt, ship immediately | Theory + Practice + Production |
❌ Traditional Approach: 2 hours to find + 3 hours to adapt = 5 hours ✅ Our Repository: 2 minutes to find + 15 minutes to adapt = 17 minutes ⏱️ Time Saved: 4 hours 43 minutes per problem 📈 With 100 problems/year: 470 hours saved 🚀 That's 11.75 work weeks back in your life! 🐛 Report Issue • 💬 Join Discussion • 🤝 Contribute • 🔥 View Trending • ⬆️ Back to Top
Every star:
- ⚡ Saves developer time
- 🚀 Accelerates AI/ML innovation
- 🌍 Helps the community grow
- 💡 Motivates us to add more content
Maintained with ❤️ by Umit Kacar, PhD
🔄 Last Updated: January 2025 | 📊 Next Update: February 2025 | 🆕 Added: 50+ trending 2024-2025 resources