@@ -11,23 +11,113 @@ def __init__(self, fit_intercept=True):
1111
1212 Notes
1313 -----
14- Given data matrix *X* and target vector *y* , the maximum-likelihood estimate
15- for the regression coefficients, :math:`\ \beta`, is:
14+ Given data matrix **X** and target vector **y** , the maximum-likelihood
15+ estimate for the regression coefficients, :math:`\beta`, is:
1616
1717 .. math::
1818
19- \hat{\beta} =
20- \left(\mathbf{X}^\top \mathbf{X}\right)^{-1} \mathbf{X}^\top \mathbf{y}
19+ \hat{\beta} = \Sigma^{-1} \mathbf{X}^\top \mathbf{y}
20+
21+ where :math:`\Sigma^{-1} = (\mathbf{X}^\top \mathbf{X})^{-1}`.
2122
2223 Parameters
2324 ----------
2425 fit_intercept : bool
25- Whether to fit an additional intercept term in addition to the
26- model coefficients. Default is True.
26+ Whether to fit an intercept term in addition to the model
27+ coefficients. Default is True.
2728 """
2829 self .beta = None
30+ self .sigma_inv = None
2931 self .fit_intercept = fit_intercept
3032
33+ self ._is_fit = False
34+
35+ def update (self , X , y ):
36+ r"""
37+ Incrementally update the least-squares coefficients for a set of new
38+ examples.
39+
40+ Notes
41+ -----
42+ The recursive least-squares algorithm [1]_ [2]_ is used to efficiently
43+ update the regression parameters as new examples become available. For
44+ a single new example :math:`(\mathbf{x}_{t+1}, \mathbf{y}_{t+1})`, the
45+ parameter updates are
46+
47+ .. math::
48+
49+ \beta_{t+1} = \left(
50+ \mathbf{X}_{1:t}^\top \mathbf{X}_{1:t} +
51+ \mathbf{x}_{t+1}\mathbf{x}_{t+1}^\top \right)^{-1}
52+ \mathbf{X}_{1:t}^\top \mathbf{Y}_{1:t} +
53+ \mathbf{x}_{t+1}^\top \mathbf{y}_{t+1}
54+
55+ where :math:`\beta_{t+1}` are the updated regression coefficients,
56+ :math:`\mathbf{X}_{1:t}` and :math:`\mathbf{Y}_{1:t}` are the set of
57+ examples observed from timestep 1 to *t*.
58+
59+ In the single-example case, the RLS algorithm uses the Sherman-Morrison
60+ formula [3]_ to avoid re-inverting the covariance matrix on each new
61+ update. In the multi-example case (i.e., where :math:`\mathbf{X}_{t+1}`
62+ and :math:`\mathbf{y}_{t+1}` are matrices of `N` examples each), we use
63+ the generalized Woodbury matrix identity [4]_ to update the inverse
64+ covariance. This comes at a performance cost, but is still more
65+ performant than doing multiple single-example updates if *N* is large.
66+
67+ References
68+ ----------
69+ .. [1] Gauss, C. F. (1821) _Theoria combinationis observationum
70+ erroribus minimis obnoxiae_, Werke, 4. Gottinge
71+ .. [2] https://en.wikipedia.org/wiki/Recursive_least_squares_filter
72+ .. [3] https://en.wikipedia.org/wiki/Sherman%E2%80%93Morrison_formula
73+ .. [4] https://en.wikipedia.org/wiki/Woodbury_matrix_identity
74+
75+ Parameters
76+ ----------
77+ X : :py:class:`ndarray <numpy.ndarray>` of shape `(N, M)`
78+ A dataset consisting of `N` examples, each of dimension `M`
79+ y : :py:class:`ndarray <numpy.ndarray>` of shape `(N, K)`
80+ The targets for each of the `N` examples in `X`, where each target
81+ has dimension `K`
82+ """
83+ if not self ._is_fit :
84+ raise RuntimeError ("You must call the `fit` method before calling `update`" )
85+
86+ X , y = np .atleast_2d (X ), np .atleast_2d (y )
87+
88+ X1 , Y1 = X .shape [0 ], y .shape [0 ]
89+ self ._update1D (X , y ) if X1 == Y1 == 1 else self ._update2D (X , y )
90+
91+ def _update1D (self , x , y ):
92+ """Sherman-Morrison update for a single example"""
93+ beta , S_inv = self .beta , self .sigma_inv
94+
95+ # convert x to a design vector if we're fitting an intercept
96+ if self .fit_intercept :
97+ x = np .c_ [1 , x ]
98+
99+ # update the inverse of the covariance matrix via Sherman-Morrison
100+ S_inv -= (S_inv @ x .T @ x @ S_inv ) / (1 + x @ S_inv @ x .T )
101+
102+ # update the model coefficients
103+ beta += S_inv @ x .T @ (y - x @ beta )
104+
105+ def _update2D (self , X , y ):
106+ """Woodbury update for multiple examples"""
107+ beta , S_inv = self .beta , self .sigma_inv
108+
109+ # convert X to a design matrix if we're fitting an intercept
110+ if self .fit_intercept :
111+ X = np .c_ [np .ones (X .shape [0 ]), X ]
112+
113+ I = np .eye (X .shape [0 ])
114+
115+ # update the inverse of the covariance matrix via Woodbury identity
116+ S_inv -= S_inv @ X .T @ np .linalg .pinv (I + X @ S_inv @ X .T ) @ X @ S_inv
117+
118+ # update the model coefficients
119+ beta += S_inv @ X .T @ (y - X @ beta )
120+
31121 def fit (self , X , y ):
32122 """
33123 Fit the regression coefficients via maximum likelihood.
@@ -44,8 +134,10 @@ def fit(self, X, y):
44134 if self .fit_intercept :
45135 X = np .c_ [np .ones (X .shape [0 ]), X ]
46136
47- pseudo_inverse = np .linalg .inv (X .T @ X ) @ X .T
48- self .beta = np .dot (pseudo_inverse , y )
137+ self .sigma_inv = np .linalg .pinv (X .T @ X )
138+ self .beta = np .atleast_2d (self .sigma_inv @ X .T @ y )
139+
140+ self ._is_fit = True
49141
50142 def predict (self , X ):
51143 """
@@ -166,22 +258,22 @@ def __init__(self, penalty="l2", gamma=0, fit_intercept=True):
166258 \left(
167259 \sum_{i=0}^N y_i \log(\hat{y}_i) +
168260 (1-y_i) \log(1-\hat{y}_i)
169- \right) - R(\mathbf{b}, \gamma)
261+ \right) - R(\mathbf{b}, \gamma)
170262 \right]
171-
263+
172264 where
173-
265+
174266 .. math::
175-
267+
176268 R(\mathbf{b}, \gamma) = \left\{
177269 \begin{array}{lr}
178270 \frac{\gamma}{2} ||\mathbf{beta}||_2^2 & :\texttt{ penalty = 'l2'}\\
179271 \gamma ||\beta||_1 & :\texttt{ penalty = 'l1'}
180272 \end{array}
181273 \right.
182-
183- is a regularization penalty, :math:`\gamma` is a regularization weight,
184- `N` is the number of examples in **y**, and **b** is the vector of model
274+
275+ is a regularization penalty, :math:`\gamma` is a regularization weight,
276+ `N` is the number of examples in **y**, and **b** is the vector of model
185277 coefficients.
186278
187279 Parameters
@@ -251,10 +343,10 @@ def _NLL(self, X, y, y_pred):
251343 \right]
252344 """
253345 N , M = X .shape
254- beta , gamma = self .beta , self .gamma
346+ beta , gamma = self .beta , self .gamma
255347 order = 2 if self .penalty == "l2" else 1
256348 norm_beta = np .linalg .norm (beta , ord = order )
257-
349+
258350 nll = - np .log (y_pred [y == 1 ]).sum () - np .log (1 - y_pred [y == 0 ]).sum ()
259351 penalty = (gamma / 2 ) * norm_beta ** 2 if order == 2 else gamma * norm_beta
260352 return (penalty + nll ) / N
0 commit comments