Skip to content

charmplusplus/mpi-operator

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MPI Operator

Build Status Docker Pulls

The MPI Operator makes it easy to run allreduce-style distributed training on Kubernetes. Please check out this blog post for an introduction to MPI Operator and its industry adoption.

Installation

You can deploy the operator with default settings by running the following commands:

  • Latest Development Version
kubectl apply -f https://raw.githubusercontent.com/kubeflow/mpi-operator/master/deploy/v2beta1/mpi-operator.yaml
  • Release Version
kubectl apply -f https://raw.githubusercontent.com/kubeflow/mpi-operator/v0.4.0/deploy/v2beta1/mpi-operator.yaml

Alternatively, follow the getting started guide to deploy Kubeflow.

An alpha version of MPI support was introduced with Kubeflow 0.2.0. You must be using a version of Kubeflow newer than 0.2.0.

You can check whether the MPI Job custom resource is installed via:

kubectl get crd 

The output should include mpijobs.kubeflow.org like the following:

NAME AGE ... mpijobs.kubeflow.org 4d ... 

If it is not included, you can add it as follows using kustomize:

git clone https://github.com/kubeflow/mpi-operator cd mpi-operator kustomize build manifests/overlays/kubeflow | kubectl apply -f -

Note that since Kubernetes v1.14, kustomize became a subcommand in kubectl so you can also run the following command instead:

Since Kubernetes v1.21, you can use:

kubectl apply -k manifests/overlays/kubeflow
kubectl kustomize base | kubectl apply -f -

Creating an MPI Job

You can create an MPI job by defining an MPIJob config file. See TensorFlow benchmark example config file for launching a multi-node TensorFlow benchmark training job. You may change the config file based on your requirements.

cat examples/v2beta1/tensorflow-benchmarks/tensorflow-benchmarks.yaml 

Deploy the MPIJob resource to start training:

kubectl apply -f examples/v2beta1/tensorflow-benchmarks/tensorflow-benchmarks.yaml 

Monitoring an MPI Job

Once the MPIJob resource is created, you should now be able to see the created pods matching the specified number of GPUs. You can also monitor the job status from the status section. Here is sample output when the job is successfully completed.

kubectl get -o yaml mpijobs tensorflow-benchmarks 
apiVersion: kubeflow.org/v2beta1 kind: MPIJob metadata: creationTimestamp: "2019-07-09T22:15:51Z" generation: 1 name: tensorflow-benchmarks namespace: default resourceVersion: "5645868" selfLink: /apis/kubeflow.org/v1alpha2/namespaces/default/mpijobs/tensorflow-benchmarks uid: 1c5b470f-a297-11e9-964d-88d7f67c6e6d spec: runPolicy: cleanPodPolicy: Running mpiReplicaSpecs: Launcher: replicas: 1 template: spec: containers: - command: - mpirun - --allow-run-as-root - -np - "2" - -bind-to - none - -map-by - slot - -x - NCCL_DEBUG=INFO - -x - LD_LIBRARY_PATH - -x - PATH - -mca - pml - ob1 - -mca - btl - ^openib - python - scripts/tf_cnn_benchmarks/tf_cnn_benchmarks.py - --model=resnet101 - --batch_size=64 - --variable_update=horovod image: mpioperator/tensorflow-benchmarks:latest name: tensorflow-benchmarks Worker: replicas: 1 template: spec: containers: - image: mpioperator/tensorflow-benchmarks:latest name: tensorflow-benchmarks resources: limits: nvidia.com/gpu: 2 slotsPerWorker: 2 status: completionTime: "2019-07-09T22:17:06Z" conditions: - lastTransitionTime: "2019-07-09T22:15:51Z" lastUpdateTime: "2019-07-09T22:15:51Z" message: MPIJob default/tensorflow-benchmarks is created. reason: MPIJobCreated status: "True" type: Created - lastTransitionTime: "2019-07-09T22:15:54Z" lastUpdateTime: "2019-07-09T22:15:54Z" message: MPIJob default/tensorflow-benchmarks is running. reason: MPIJobRunning status: "False" type: Running - lastTransitionTime: "2019-07-09T22:17:06Z" lastUpdateTime: "2019-07-09T22:17:06Z" message: MPIJob default/tensorflow-benchmarks successfully completed. reason: MPIJobSucceeded status: "True" type: Succeeded replicaStatuses: Launcher: succeeded: 1 Worker: {} startTime: "2019-07-09T22:15:51Z" 

Training should run for 100 steps and takes a few minutes on a GPU cluster. You can inspect the logs to see the training progress. When the job starts, access the logs from the launcher pod:

PODNAME=$(kubectl get pods -l training.kubeflow.org/job-name=tensorflow-benchmarks,training.kubeflow.org/job-role=launcher -o name) kubectl logs -f ${PODNAME} 
TensorFlow: 1.14 Model: resnet101 Dataset: imagenet (synthetic) Mode: training SingleSess: False Batch size: 128 global 64 per device Num batches: 100 Num epochs: 0.01 Devices: ['horovod/gpu:0', 'horovod/gpu:1'] NUMA bind: False Data format: NCHW Optimizer: sgd Variables: horovod ... 40	images/sec: 154.4 +/- 0.7 (jitter = 4.0)	8.280 40	images/sec: 154.4 +/- 0.7 (jitter = 4.1)	8.482 50	images/sec: 154.8 +/- 0.6 (jitter = 4.0)	8.397 50	images/sec: 154.8 +/- 0.6 (jitter = 4.2)	8.450 60	images/sec: 154.5 +/- 0.5 (jitter = 4.1)	8.321 60	images/sec: 154.5 +/- 0.5 (jitter = 4.4)	8.349 70	images/sec: 154.5 +/- 0.5 (jitter = 4.0)	8.433 70	images/sec: 154.5 +/- 0.5 (jitter = 4.4)	8.430 80	images/sec: 154.8 +/- 0.4 (jitter = 3.6)	8.199 80	images/sec: 154.8 +/- 0.4 (jitter = 3.8)	8.404 90	images/sec: 154.6 +/- 0.4 (jitter = 3.7)	8.418 90	images/sec: 154.6 +/- 0.4 (jitter = 3.6)	8.459 100	images/sec: 154.2 +/- 0.4 (jitter = 4.0)	8.372 100	images/sec: 154.2 +/- 0.4 (jitter = 4.0)	8.542 ---------------------------------------------------------------- total images/sec: 308.27 

For a sample that uses Intel MPI, see:

cat examples/pi/pi-intel.yaml

For a sample that uses MPICH, see:

cat examples/pi/pi-mpich.yaml

Exposed Metrics

Metric name Metric type Description Labels
mpi_operator_jobs_created_total Counter Counts number of MPI jobs created
mpi_operator_jobs_successful_total Counter Counts number of MPI jobs successful
mpi_operator_jobs_failed_total Counter Counts number of MPI jobs failed
mpi_operator_job_info Gauge Information about MPIJob launcher=<launcher-pod-name>
namespace=<job-namespace>

Join Metrics

With kube-state-metrics, one can join metrics by labels. For example kube_pod_info * on(pod,namespace) group_left label_replace(mpi_operator_job_infos, "pod", "$0", "launcher", ".*")

Docker Images

We push Docker images of mpioperator on Dockerhub for every release. You can use the following Dockerfile to build the image yourself:

Alternative, you can build the image using make:

make RELEASE_VERSION=dev IMAGE_NAME=registry.example.com/mpi-operator images

This will produce an image with the tag registry.example.com/mpi-operator:dev.

Contributing

Learn more in CONTRIBUTING.

About

No description, website, or topics provided.

Resources

License

Contributing

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 66