This document proposes a machine learning model using the C4.5 decision tree algorithm to detect DDOS attacks. It trains the model on DDOS attack samples from the CICIDS2017 dataset, dividing the samples into training and test data. The Weka data mining tool is used to build the model with attribute filtering and 10-fold cross-validation. The trained model is then validated on the test data to accurately differentiate between benign and DDOS flooding traffic. This combined signature-based and anomaly-based detection approach can effectively detect complex DDOS attacks.