The document compares and contrasts the SAS and Spark frameworks. It provides an overview of their programming models, with SAS using data steps and procedures while Spark uses Scala and distributed datasets. Examples are shown of common tasks like loading data, sorting, grouping, and regression in both SAS Proc SQL and Spark SQL. Spark MLlib is described as Spark's machine learning library, in contrast to SAS Stats. Finally, Spark Streaming is demonstrated for loading and querying streaming data from Kafka. The key takeaways recommend trying Spark for large data, distributed computing, better control of code, open source licensing, or leveraging Hadoop data.