This study explores the use of hydraulic servo control (HSC) systems in static and dynamic structural testing, focusing on optimizing proportional, integral, derivative (PID) controller tuning. The HSC system comprises three main components: hydraulic, control, and measurement systems. To achieve optimal performance, the research begins with preparing setpoint displacement/force data and developing mathematical models for the cylinder actuator and servo valve, incorporating sensors like load cells and linear variable differential transducers (LVDTs). A closed-loop transfer function is used to predict outputs that align closely with setpoint values. Three PID tuning methods—Ziegler-Nichols, Cohen-Coon, and adaptive control—are evaluated. Simulation results show all methods yield satisfactory performance with evaluation errors below 1.5%. Implementation tests further confirm effectiveness, with root mean square deviation (RMSD) values under 1%, indicating high precision. Despite promising results, the study acknowledges limitations due to restricted datasets and test conditions. Future research should address broader dynamic load variations, nonlinearities such as fluid leakage and hysteresis, and integrate intelligent optimization techniques like machine learning to enhance robustness and adaptability. This work contributes to improving the reliability and accuracy of HSC systems in structural testing, paving the way for smarter, more responsive control strategies in engineering applications.