Orthogonal Frequency
Division Multiplexing 
OFDM 
fred harris 
Cubic Signal Processing Chair 
 
San Diego State University 
fred.harris@sdsu.edu 
 
Vehicular Technology Conference - 2004 
Textbooks and References 
 Wireless OFDM Systems: How to Make Them Work 
 Marc Engels, Editor 
 OFDM Wireless LANs: A Theoretical and Practical Guide 
 Juha Heiskala and John Terry 
 OFDM for Wireless Multimedia Communications 
 Richard Van Nee and Ramjee Prasad 
 Single and Multi-Carrier Quadrature Amplitude Modulation 
 Lajos Hanzo, William Webb, and Thomas Keller 
 ADSL, VDSL, and Multicarrier Modulation 
 John Bingham 
 Implementing ADSL 
 David Ginsburg 
 DSL Advances 
 Massimo Sorbara, John Cioffi, and Peter Silverman 
 
 
OFDM 
 OFDM also known as 
 Multi-Carrier or Multi-Tone Modulation 
 DAB-OFDM 
 Digital Audio Broadcasting 
 DVD-OFDM 
 Digital Video Broadcasting 
 ADSL-OFDM 
 Asynchronous Digital Subscriber Line 
 Wireless Local Area Network 
 IEEE-802.11a, IEEE-802.11g 
 ETSI BRAN (Hyperlan/2) 
OFDM Systems 
System Transform 
Size 
Number 
Carriers 
Channel 
Spacing 
kHz 
Bandwidth 
MHz 
Sample 
Rate 
MHz 
Symbol 
Duration 
sec 
Data 
 
Rate 
 
Mbits/s 
HyperLAN/2 64 52 
4 
312.5 16.25 20 3.2 
0.8 
6-54 
802.11a 64 52 
4 
312.5 16.56 20 3.2 
0.8 
6-54 
DVB-T 2048 
1024 
1712 
842 
4.464 7.643 9.174 224 0.68-14.92 
DAB 2048 
8192 
1536 1.00 1.536 2.048 24/48/96 
msec 
3.072 
ADSL 256 (down) 
64 (up) 
36-127 
7-28 
4.3125 1.104 1.104 231.9 0.64-8.192 
OFDM Advantages 
 Efficiently Deals With Multi-path Fading 
 Efficiently Deals With Channel Delay Spread 
 Enhanced Channel Capacity 
 Adaptively Modifies Modulation Density 
 Robustness to Narrowband Interference 
OFDM Disadvantages 
 OFDM Sensitive to 
 Small Carrier Frequency Offsets 
 OFDM Exhibits 
 High Peak to Average Power Ratio 
 OFDM Sensitive to 
 High Frequency Phase Noise 
 OFDM Sensitive to 
 Sampling Clock Offsets 
Single Carrier System 
Sequential Transmission 
 of Waveforms 
 Waveforms are 
 Short Duration T 
 Waveforms Occupy 
Full System Bandwidth 1/T 
Multi-Carrier System 
 Parallel Transmission 
 of Waveforms 
 Waveforms are 
 Long Duration MT 
Waveforms Occupy 1/M th 
Of System Bandwidth 1/T 
OFDM: Dense Multichannel System 
Conventional Multichannel System 
 
Non Overlapping Adjacent Channels. 
 
Channels separated by More 
Than Their Two Sided bandwidth 
 
 
OFDM Multichannel System 
 
50% Overlap of Adjacent Channels 
Available bandwidth is Used Twice 
 
Channels separated by Half 
Their Two Sided bandwidth 
Standard Digital 
Communication System 
Bandlimited Channel 
Nyquist Spectrum 
Nyquist Spectrum 
With Cosine Taper 
Infinite Duration Nyquist Pulse Finite Duration Nyquist Pulse 
Translation in Time Domain 
Phase Slope in Frequency Domain 
Translated Signals Are Orthogonal When Peak is Translated to Zero Crossings of Original 
Channel Distortion 
Modifies Received Wave Shape 
-6 -4 -2 0 2 4 6
-0.2
0
0.2
0.4
0.6
0.8
1
Matched Filter Output For SQRT Nyquist Pulse
-6 -4 -2 0 2 4 6
-0.2
0
0.2
0.4
0.6
0.8
1
Matched Filter Output For Channel Distorted SQRT Nyquist Pulse
Inter Symbol Interference (ISI) 
Due to Channel Distorted Signal 
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-2
-1
0
1
2
Eye Diagram No Channel Distortion
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-2
-1
0
1
2
Eye Diagram With Channel Distortion
Steady State Response of a Filter 
to a Sine Wave is a Sine Wave 
Rectangle Pulse: DC Centered Spectrum 
with Equally Spaced Zeros 
0
sin(2 )
2
( )
(2 )
2
P
P
P
T
f
H f AT
T
f
t
t
=
Shift Spectrum with Linear Phase on DC 
Pulse: Move Spectrum to First Spectral Zero 
)
2
)
1
( 2 (
)
2
)
1
( 2 sin(
) (
P
p
P
p
P k
T
T
k f
T
T
k f
AT f H
=
t
t
Real Part of Complex Exponential Time Series: 
Integer Number of Cycles per Interval 
0 0.5 1
-1
0
1
0 0.5 1
-1
0
1
0 0.5 1
-1
0
1
0 0.5 1
-1
0
1
0 0.5 1
-1
0
1
0 0.5 1
-1
0
1
0 0.5 1
-1
0
1
0 0.5 1
-1
0
1
0 0.5 1
-1
0
1
0 0.5 1
-1
0
1
0 0.5 1
-1
0
1
0 0.5 1
-1
0
1
0 0.5 1
-1
0
1
0 0.5 1
-1
0
1
0 0.5 1
-1
0
1
0 0.5 1
-1
0
1
Imaginary Part of Complex Exponential Time Series: 
Integer Number of Cycles per Interval 
0 0.5 1
-1
0
1
0 0.5 1
-1
0
1
0 0.5 1
-1
0
1
0 0.5 1
-1
0
1
0 0.5 1
-1
0
1
0 0.5 1
-1
0
1
0 0.5 1
-1
0
1
0 0.5 1
-1
0
1
0 0.5 1
-1
0
1
0 0.5 1
-1
0
1
0 0.5 1
-1
0
1
0 0.5 1
-1
0
1
0 0.5 1
-1
0
1
0 0.5 1
-1
0
1
0 0.5 1
-1
0
1
0 0.5 1
-1
0
1
Spectra Of Complex Exponential Time Series: 
Integer Number of Cycles per Interval 
0 0.5
0
0.5
1
0 0.5
0
0.5
1
0 0.5
0
0.5
1
0 0.5
0
0.5
1
0 0.5
0
0.5
1
0 0.5
0
0.5
1
0 0.5
0
0.5
1
0 0.5
0
0.5
1
0 0.5
0
0.5
1
0 0.5
0
0.5
1
0 0.5
0
0.5
1
0 0.5
0
0.5
1
0 0.5
0
0.5
1
0 0.5
0
0.5
1
0 0.5
0
0.5
1
0 0.5
0
0.5
1
Continuous Time: Orthogonal Time Signal Set 
}
 =
=
=
< s
 =
 =
< s
 =
-
T
m n
k
m n if T
m n if
dt t t
T t
k
t k
T
j t
T t
k
t
0
k
0
) ( ) (
0
, , 2 , 1 , 0 , 1 , 2 ,
: )
2
exp( ) (
0
, , 2 , 1 , 0 , 1 , 2 ,
: ) ( 
 
t
 
 
Discrete Time: Orthogonal Time Signal Set 
k
1
0
..., 2, 1, 0 , 1, 2, ....,
( ) :
0 1
0 , 1, 2, ...., 1
2
( ) exp( ) :
0
0 , 1, 2, ...., 1
2
exp( ) :
0
0
( ) ( )
: ( ) ( ) ( ) ( )
k
N
n m
n
k N k k N k
k
n
n N
k N
n j k nT
NT nT NT
k N
j k n
N n N
if n m
n n
N if n m
NOTE n n n n
-
=
+ 
= 
s s 
= 
= 
s <
= 
= 
s <
=
=
=
= =
OFDM Modulator 
OFDM Demodulator 
OFDM is a Block Process 
Adjacent Symbol Interference (ASI) 
Symbol Smearing Due to Channel 
Guard Interval Inserted Between Adjacent 
Symbols to Suppress ASI 
Cyclic Prefix Inserted in Guard Interval to 
Suppress Adjacent Channel Interference (ACI) 
Data Length Defines Sinc Width: 
Spectral Spacing Matches Width 
Extended Data Length Reduces Sinc 
Width: Spectral Spacing Preserved 
OFDM Symbol: Time and Spectra 
Channel Input and Output 
20 40 60 80 100 120 140 160 180
-0.4
-0.2
0
0.2
0.4
0.6
Real Part of Time Series, Input to Channel
20 40 60 80 100 120 140 160 180
-0.4
-0.2
0
0.2
0.4
0.6
Real Part of Time Series, Output of Channel
-0.5 0 0.5
-30
-25
-20
-15
-10
-5
0
5
10
Spectrum
-0.5 0 0.5
-30
-25
-20
-15
-10
-5
0
5
10
Spectrum
OFDM Spectra 
Without and with Cyclic Prefix 
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-1.5
-1
-0.5
0
0.5
1
1.5
OFDM spectral lines With Channel Without Cyclic Prefix
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-1.5
-1
-0.5
0
0.5
1
1.5
OFDM spectral lines With Channel With Cyclic Prefix
Overlaid Constellations , All Frequencies, 
Without and With Cyclic Prefix 
-1.5 -1 -0.5 0 0.5 1 1.5
-1.5
-1
-0.5
0
0.5
1
1.5
OFDM Constellations With Channel Without Cyclic Prefix
-1.5 -1 -0.5 0 0.5 1 1.5
-1.5
-1
-0.5
0
0.5
1
1.5
OFDM Constellations With Channel With Cyclic Prefix
Constellations: Different OFDM Bins 
Without Cyclic Prefix 
-1 0 1
-1
0
1
-1 0 1
-1
0
1
-1 0 1
-1
0
1
-1 0 1
-1
0
1
-1 0 1
-1
0
1
-1 0 1
-1
0
1
Constellations: Different OFDM Bins 
 With Cyclic Prefix 
-1 0 1
-1
0
1
-1 0 1
-1
0
1
-1 0 1
-1
0
1
-1 0 1
-1
0
1
-1 0 1
-1
0
1
-1 0 1
-1
0
1
Channel Estimate with Pilots 
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0
0.5
1
Channel, Bandwidth, and Samples
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0
0.5
1
Zero Packed
Spectral Samples
and
Extended Reflection
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0
0.5
1
Interpolated
Spectral Points
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0
0.005
0.01
Magnitude of Interpolation Error For In-Band Frequencies
Normalized Frequency
DFT (FFT) as Signal Generator 
for Complex Sinusoids 
DFT (FFT) As Signal Analyzer 
for Complex Sinusoids 
1 , ... , 2 , 1 , 0 : ) ( ) (
1
0
2
 = =
N k e n h k H
N
n
nk
N
j
 t
 
Radix-2 FFT Flow Diagrams 
Input Vector FFT Mapped to Output Time Series, 
Up-Sampled, Converted Via DAC to Waveform, 
and I-Q Up-Converted 
The FFT as Signal Generator 
and Interpolator 
OFDM Modulation With IFFT 
and Interpolator 
OFDM Demodulation With FFT 
OFDM Transceiver 
Time and Spectra of Sparse OFDM Symbol 
0 10 20 30 40 50 60 70 80 90 100
-1
-0.5
0
0.5
1
Real Part OFDM Time Series
Normalized Time
A
m
p
l
i
t
u
d
e
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-60
-50
-40
-30
-20
-10
0
10
Spectrum
Normalized Frequency
L
o
g
 
M
a
g
n
i
t
u
d
e
 
(
d
B
)
Time and Spectra With Frequency Offset = 0.1 Bin 
0 10 20 30 40 50 60 70 80 90 100
-1
-0.5
0
0.5
1
Real Part OFDM Time Series with Offset Frequency = 0.1 Bin Width
Normalized Time
A
m
p
l
i
t
u
d
e
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-60
-50
-40
-30
-20
-10
0
10
Spectrum With Frequency Offset = 0.1 Bin Width 
Normalized Frequency
L
o
g
 
M
a
g
n
i
t
u
d
e
 
(
d
B
)
Time and Spectra With Sample Clock Offset = 1.02 f
s
 
0 10 20 30 40 50 60 70 80 90 100
-1
-0.5
0
0.5
1
Real Part OFDM Time Series with Sampling Clock = 1.02 f
s
Normalized Time
A
m
p
l
i
t
u
d
e
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-60
-50
-40
-30
-20
-10
0
10
Spectrum With Sampling Clock = 1.02 f
s
 
Normalized Frequency
L
o
g
 
M
a
g
n
i
t
u
d
e
 
(
d
B
)
Time and Spectra With Sample Clock Offset = 0.98 f
s 
0 10 20 30 40 50 60 70 80 90 100
-1
-0.5
0
0.5
1
Real Part OFDM Time Series with Sampling Clock = 0.98 f
s
Normalized Time
A
m
p
l
i
t
u
d
e
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-60
-50
-40
-30
-20
-10
0
10
Spectrum With Sampling Clock = 0.98 f
s
 
Normalized Frequency
L
o
g
 
M
a
g
n
i
t
u
d
e
 
(
d
B
)
Ideal I-Q Up and Down Conversion 
Shape
Shape
Match
Match
CHANNEL
cos( t) e
0
cos( t) e
0
-sin( t) e
0
-sin( t) e
0
n(t)
I(t)
I(t)
Q(t)
Q(t)
^
^
Spectral and Time Description of 
Real Sinusoids 
Complex Sinusoids-I 
Complex Sinusoids-II 
Complex Baseband and Complex 
Band-Centered Spectra 
Complex Baseband and Real 
Band-Centered Spectra 
Complex Down Conversion 
Gain and Phase Imbalance in 
I-Q Mixers 
Spectral Image Due to Gain Imbalance 
Spectral Image Due to Phase Imbalance 
Line Spectral Images Due to I-Q Mismatch 
Coupling Between Positive and Negative FFT Indices Due to 
I-Q Imbalance and First Order Correction Mechanism 
(1 ) ( )
( ) ( )
2 2 2
( ) ( )
( ) (1 )
2 2 2
(1 ) ( )
( ) ( )
2 2 2
( ) ( )
( ) (1 )
2 2 2
j j
G k H k
G k H k
j j
j j
H k G k
H k G k
j j
o c o
c o o
o c o
c o o
 (
 
 (
 ( (
=
 (
 ( (
 
 (
 
 (
 
 (
+ + +
 (
 ( (
~
 (
 ( (
 
 (
+ + +
 (
 
Test Bench: Demonstration of Receiver I-Q 
Imbalances, Carrier Offset, and Timing Offset 
Carrier Offset: 4% of FFT Bin Width 
Timing Offset: 10% of Sampling Time Period 
Timing Clock Offset: 5% of Sampling Time Period per Frame 
Gain Imbalance: 10% Error 
Phase Imbalance: 0.1 Radian Error 
I-Q Mixer Imbalance; 20% Gain, 0.2 Radians 
Differential Delay to I/Q Mixers, 
10% of Sample Interval 
Periodic Time Segments in OFDM Frame 
Obtained by Zero Packing Spectrum 
Probe Mismatch During Short Repeated Preamble 
Power Amplifier Non-Linearity 
0 1 2 3 4
0
0.5
1
1.5
2
2.5
3
3.5
4
Nonlinear Transfer Function of Amplifier
1-dB Compression Point
0 2 4 6 8 10
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
Input and Output of Non-Linear Amplifier
-0.5 0 0.5
-60
-50
-40
-30
-20
-10
0
10
Spectrum of Two Input Sinusoids
Normalized Frequency
-0.5 0 0.5
-60
-50
-40
-30
-20
-10
0
10
Spectrum of Two Output Sinusoids
Normalized Frequency
16-QAM Input and Output Envelopes. 
Saturation and 1-dB Compression Circles 
-2 -1 0 1 2
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
Envelope at Output of Amplifier
-2 -1 0 1 2
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
Envelope at Input to Amplifier
 Saturation at 2-Times RMS Signal Level
Saturation 
Saturation 
1-dB 
Compression 
1-dB 
Compression 
Limiting Amplifier Effect on Received QAM Constellation 
-1 -0.5 0 0.5 1
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
Matched Filter Applied to Input of Amplifier
-1 -0.5 0 0.5 1
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
Matched Filter Applied to Output of Amplifier
Limiting Amplifier Effect on Signal Spectra 
-4 -3 -2 -1 0 1 2 3 4
-60
-50
-40
-30
-20
-10
0
10
Spectrum at Input to Amplifier
Normalized Frequency (f/f
sym
)
L
o
g
 
M
a
g
n
i
t
u
d
e
 
(
d
B
)
-4 -3 -2 -1 0 1 2 3 4
-60
-50
-40
-30
-20
-10
0
10
Spectrum at Output of Amplifier
Normalized Frequency (f/f
sym
)
L
o
g
 
M
a
g
n
i
t
u
d
e
 
(
d
B
)
SPECTRAL REGROWTH 
16-QAM (o=0.2) Envelope Statistics 
0 0.5 1 1.5 2 2.5
0
0.002
0.004
0.006
0.008
0.01
0.012
0.014
0.016
16-QAM Histogram at Amplifier Input
Normalized Amplitude (x/o
x
)
0 0.5 1 1.5 2 2.5
0
0.002
0.004
0.006
0.008
0.01
0.012
0.014
0.016 std dev =1.03
clip level
16-QAM Histogram at Amplifier Output
Normalized Amplitude (x/o
x
)
0 0.5 1 1.5 2 2.5 3
10
-6
10
-5
10
-4
10
-3
10
-2
10
-1
10
0
Probabilty of Level Crossing
Normalized Amplitude (x/o
x
)
OFDM Input and Output Envelopes: 
Saturation and 1-dB Compression Circles 
-3 -2 -1 0 1 2 3
-3
-2
-1
0
1
2
3
Envelope at Input to Amplifier
-3 -2 -1 0 1 2 3
-3
-2
-1
0
1
2
3
Envelope at Output of Amplifier
 Saturation at 2-Times RMS Signal Level
Saturation 
Saturation 
1-dB
Compression 
1-dB
Compression 
Limiting Amplifier Effect on OFDM Constellation 
-1 -0.5 0 0.5 1
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
OFDM Constellation at Input to Amplifier
-1 -0.5 0 0.5 1
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
OFDM Constellation at Output of Amplifier
OFDM Envelope Statistics 
0 1 2 3 4
0
0.005
0.01
0.015
OFDM Histogram at Amplifier Input
Normalized Amplitude (x/o
x
)
0 1 2 3 4
0
0.005
0.01
0.015
std dev =1.06 clip level
OFDM Histogram at Amplifier Output
Normalized Amplitude (x/o
x
)
0 1 2 3 4
10
-6
10
-5
10
-4
10
-3
10
-2
10
-1
10
0
Probabilty of Level Crossing
Normalized Amplitude (x/o
x
)
OFDM Envelope Statistics with 
Selected Alternate Mapping 
0 1 2 3 4
0
0.005
0.01
0.015
0.02
OFDM Histogram: One FFT
0 1 2 3 4
0
0.005
0.01
0.015
0.02
OFDM Histogram: Two FFTs
0 1 2 3 4
0
0.005
0.01
0.015
0.02
OFDM Histogram: Four FFTs
Normalized Amplitude (x/o
x
)
0 1 2 3 4
10
-6
10
-5
10
-4
10
-3
10
-2
10
-1
10
0
Probabilty of Level Crossing
Normalized Amplitude (x/o
x
)
One FFT Two FFTs 
Four FFTs 
Clipping 
Smart Clipping 
Reserve Frequency Bins Form Clipping 
Pulses 
Selecting Reserve Frequency Bins 
-60 -40 -20 0 20 40 60
0
0.2
0.4
0.6
0.8
1
Spectrum 11-Adjacent Frequencies
-0.5 0 0.5
0
0.2
0.4
0.6
0.8
1
Time Series for 11-Adjacent Frequencies
-60 -40 -20 0 20 40 60
0
0.2
0.4
0.6
0.8
1
Spectrum 11-Equally Spaced Frequencies
-0.5 0 0.5
0
0.2
0.4
0.6
0.8
1
Time Series for 11-Equally Spaced Frequencies
-60 -40 -20 0 20 40 60
0
0.2
0.4
0.6
0.8
1
Spectrum 11-Randomly Spaced Frequencies
-0.5 0 0.5
0
0.2
0.4
0.6
0.8
1
Time Series for 11-Randomly Spaced Frequencies
Reserve Bin Canceller Clipping at 2.5 o (8 dB) 
0 50 100 150 200 250
0
1
2
3
4
5
Peak envelope, input to PAR control
0 50 100 150 200 250
0
1
2
3
4
5
Peak envelope, output of first pass PAR control
data
clip level
data std dev
average peak
0 50 100 150 200 250
0
1
2
3
4
5
Peak envelope, output of second pass PAR control
data
clip level
data std dev
average peak
0 50 100 150 200 250
0
1
2
3
4
5
Peak envelope, output of third pass PAR control
data
clip level
data std dev
average peak
Statistics for Clip at 2.5 (8 dB) 
0 1 2 3 4
0
0.005
0.01
0.015
0.02
0.025
input histogram
0 1 2 3 4
0
0.005
0.01
0.015
0.02
0.025
std dev =0.928
clip level
output histogram
-5 0 5 10
10
-6
10
-5
10
-4
10
-3
10
-2
10
-1
10
0
average =-0.648 dB
prob of level crossing
PAR (dB)
input
pass-1
pass-2
pass-3
Reserve Bin Canceller Clipping at 2.2 o (6.9 dB) 
0 50 100 150 200 250
0
1
2
3
4
5
Peak envelope, input to PAR control
0 50 100 150 200 250
0
1
2
3
4
5
Peak envelope, output of first pass PAR control
data
clip level
data std dev
average peak
0 50 100 150 200 250
0
1
2
3
4
5
Peak envelope, output of second pass PAR control
data
clip level
data std dev
average peak
0 50 100 150 200 250
0
1
2
3
4
5
Peak envelope, output of third pass PAR control
data
clip level
data std dev
average peak
Statistics for Clip at 2.2 (6.9 dB) 
0 1 2 3 4
0
0.005
0.01
0.015
0.02
0.025
input histogram
0 1 2 3 4
0
0.005
0.01
0.015
0.02
0.025
std dev =0.928
clip level
output histogram
-5 0 5 10
10
-6
10
-5
10
-4
10
-3
10
-2
10
-1
10
0
average =-0.653 dB
prob of level crossing
PAR (dB)
input
pass-1
pass-2
pass-3
Reserve Bin Canceller Clipping at 2.0 o (6 dB) 
0 50 100 150 200 250
0
1
2
3
4
5
Peak envelope, input to PAR control
0 50 100 150 200 250
0
1
2
3
4
5
Peak envelope, output of first pass PAR control
data
clip level
data std dev
average peak
0 50 100 150 200 250
0
1
2
3
4
5
Peak envelope, output of second pass PAR control
data
clip level
data std dev
average peak
0 50 100 150 200 250
0
1
2
3
4
5
Peak envelope, output of third pass PAR control
data
clip level
data std dev
average peak
Statistics for Clip at 2.0 (6 dB) 
0 1 2 3 4
0
0.005
0.01
0.015
0.02
0.025
input histogram
0 1 2 3 4
0
0.005
0.01
0.015
0.02
0.025
std dev =0.927
clip level
output histogram
-5 0 5 10
10
-6
10
-5
10
-4
10
-3
10
-2
10
-1
10
0
average =-0.659 dB
prob of level crossing
PAR (dB)
input
pass-1
pass-2
pass-3
OFDM 802.11a 
Time-Frequency Profile of 802.11a Tones 
Pilot Tones Shown in Yellow 
Preamble and Pilot Structure 
 Short Symbols 
 Start of Frame Detection 
 Signal Strength Indication 
 Frequency Offset Resolution 
 Long Symbols 
 Channel Estimate 
 Fine Time Resolution 
 Distributed Pilots 
 Carrier Tracking 
 Sample Clock Tracking 
 
 
Preamble Time Structure 
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0
0.2
0.4
0.6
0.8
Magnitude IEEE 802.11a Preamble
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1
-0.5
0
0.5
1
Real Part
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.5
0
0.5
1
Imaginary Part
Detecting Frame Start with 
Repeated Short Symbols 
Signals in Preamble Detector 
0 0.5 1 1.5 2 2.5 3 3.5 4
0
0.2
0.4
0.6
0.8
Envelope of Input Signal
0 0.5 1 1.5 2 2.5 3 3.5 4
0
0.2
0.4
0.6
0.8
Delayed Envelope of Input Signal
0 0.5 1 1.5 2 2.5 3 3.5 4
0
0.2
0.4
0.6
0.8
cross and auto correlations of Input Signal
0 0.5 1 1.5 2 2.5 3 3.5 4
0
0.5
1
Ratio of Cross to Auto Correlation
Detection
Threshold 
Cross Correlation 
Detail of Signal in Preamble Detector 
0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
0
0.2
0.4
0.6
0.8
Envelope of Input Signal
0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
0
0.2
0.4
0.6
0.8
Delayed Envelope of Input Signal
0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
0
0.2
0.4
0.6
0.8
cross and auto correlations of Input Signal
0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
0
0.5
1
Ratio of Cross to Auto Correlation
Detection
Threshold 
Cross Correlation 
Auto Correlation 
Maximum Likelihood Estimator for 
Frequency Offset 
Frequency and Signal Strength Estimates 
0 0.5 1 1.5 2 2.5 3 3.5 4
-10
-5
0
5
10
Estimate of Frequency Offset
Sample Time
F
r
e
q
u
e
n
c
y
 
O
f
f
s
e
t
 
i
n
 
F
F
T
 
B
i
n
s
0 0.5 1 1.5 2 2.5 3 3.5 4
0
0.02
0.04
0.06
0.08
0.1
Estimate of Signal Strength
Sample Time
M
a
g
 
S
q
u
a
r
e
Known Offset
3.3 FFT Bins 
Cross Correlation of Long Preamble 
0 1 2 3 4 5 6 7
0
2
4
6
8
10
12
14
Cross Correlation of Input Signal With Long Preamble Section
Time Samples
A
m
p
l
i
t
u
d
e
4.3 4.4 4.5 4.6 4.7 4.8
0
5
10
15
Zoom to First Correlation Peak
Time Samples
A
m
p
l
i
t
u
d
e
5.3 5.4 5.5 5.6 5.7 5.8
0
5
10
15
Zoom to Second Correlation Peak
Time Samples
A
m
p
l
i
t
u
d
e
Expected Peak Position 
Expected Peak Position 
Clipped Cross Correlation of Long Preamble 
0 100 200 300 400 500 600 700 800 900
0
10
20
30
40
50
Clipped Cross Correlation of Input Signal With Long Preamble Section
Time Samples
A
m
p
l
i
t
u
d
e
4.3 4.4 4.5 4.6 4.7 4.8
0
10
20
30
40
50
Zoom to First Correlation Peak
Time Samples
A
m
p
l
i
t
u
d
e
5.3 5.4 5.5 5.6 5.7 5.8
0
10
20
30
40
50
Zoom to Second Correlation Peak
Time Samples
A
m
p
l
i
t
u
d
e
 Clipped Correlator
Replica Signal Clipped Version of Template Signal
Sign[Real(Template)]+j*sign[Imag(Template)] 
Channel Probe With Long Preamble 
-0.5 0 0.5
0
1
2
3
4
5
6
7
Channel Probe, Long Segment of Preamble 
Normalized Frequency
A
m
p
l
i
t
u
d
e
-0.5 0 0.5
0
1
2
3
4
5
6
7
Response of Channel Probe, One Look
Normalized Frequency
A
m
p
l
i
t
u
d
e
-0.5 0 0.5
0
1
2
3
4
5
6
7
Response of Channel Probe, No Noise
Normalized Frequency
A
m
p
l
i
t
u
d
e
-0.5 0 0.5
0
1
2
3
4
5
6
7
Response of Channel Probe, Average of Two Looks
Normalized Frequency
A
m
p
l
i
t
u
d
e
Constellation with Residual Carrier Offset 
-1.5 -1 -0.5 0 0.5 1 1.5
-1.5
-1
-0.5
0
0.5
1
1.5
5000 Constellations, Zero Carrier Frequency Offset
-1.5 -1 -0.5 0 0.5 1 1.5
-1.5
-1
-0.5
0
0.5
1
1.5
400 pilot, Zero Carrier Frequency Offset
-1.5 -1 -0.5 0 0.5 1 1.5
-1.5
-1
-0.5
0
0.5
1
1.5
5000 Constellations, 5 ppm Carrier Frequency Offset
-1.5 -1 -0.5 0 0.5 1 1.5
-1.5
-1
-0.5
0
0.5
1
1.5
400 pilot, 5 ppm Carrier Frequency Offset
Frequency Domain Residual Carrier Offset 
-30 -20 -10 0 10 20 30
-1.5
-1
-0.5
0
0.5
1
1.5
60 Frames Real Part FFT: Zero Carrier Frequency Offset
Frequency Index
A
m
p
l
i
t
u
d
e
-30 -20 -10 0 10 20 30
-1.5
-1
-0.5
0
0.5
1
1.5
60 Frames Real Part FFT: 5 ppm Carrier Frequency Offset
Frequency Index
A
m
p
l
i
t
u
d
e
Constellations with Sample Clock Offset 
-1.5 -1 -0.5 0 0.5 1 1.5
-1.5
-1
-0.5
0
0.5
1
1.5
5000 Constellations, Zero Clock Frequency Offset
-1.5 -1 -0.5 0 0.5 1 1.5
-1.5
-1
-0.5
0
0.5
1
1.5
400 pilot, Zero Clock Frequency Offset
-1.5 -1 -0.5 0 0.5 1 1.5
-1.5
-1
-0.5
0
0.5
1
1.5
5000 Constellations, 300 ppm Clock Frequency Offset
-1.5 -1 -0.5 0 0.5 1 1.5
-1.5
-1
-0.5
0
0.5
1
1.5
400 pilot, 300 ppm Clock Frequency Offset
Frequency Domain With Sample Clock Offset 
-30 -20 -10 0 10 20 30
-1.5
-1
-0.5
0
0.5
1
1.5
80 Frames Real Part FFT: Zero Clock Frequency Offset
Frequency Index
A
m
p
l
i
t
u
d
e
-30 -20 -10 0 10 20 30
-1.5
-1
-0.5
0
0.5
1
1.5
80 Frames Real Part FFT: 300 ppm Clock Frequency Offset
Frequency Index
A
m
p
l
i
t
u
d
e
Other Variants of OFDM 
Amplitude and Phase Overlays 
 Shaped OFDM 
 OQAM OFDM 
 Coded OFDM 
 CI OFDM 
Shape to Control Spectral Side Lobes 
Overlapped OFDM Frames 
Polyphase Filter For Shaped OFDM 
Shaping and Matched Filter 
Impulse Response of Shaped OFDM 
Modulator and Demodulator 
0 1 2 3 4 5 6 7 8
0
0.5
1
Impulse at Input to IFFT (DC-bin)
0 1 2 3 4 5 6 7 8
0
0.5
1
Impulse Response at Output of IFFT
0 1 2 3 4 5 6 7 8
0
0.5
1
Impulse Response at Output of Polyphase Shaping Filter
0 1 2 3 4 5 6 7 8
0
0.5
1
1.5
Impulse Response at Output of
 Polyphase Matched Filter
0 1 2 3 4 5 6 7 8
0
0.5
1
Impulse Response at Output of FFT
Orthogonal: Adjacent Time Slots Non 
Adjacent Frequency Bins 
0 1 2 3 4 5
-0.2
0
0.2
0.4
0.6
0.8
1
Impulse Response Shaping Filter
0 2 4 6 8 10
-0.2
0
0.2
0.4
0.6
0.8
1
Auto Correlation Response
-4 -3 -2 -1 0 1 2 3 4
-60
-40
-20
0
Adjacent Spectral Bins Correlated
Alternate Spectral Bins Not Correlated
Spectrum: Shaping Filter Centered on IFFT Spectral Bins
Impulse Response Time-Frequency Profile 
-10
-5
0
5
10
0
2
4
6
8
0
0.2
0.4
0.6
0.8
1
frequency bin
O
F
D
M
 F
ra
m
e
 N
u
m
b
e
r
Orthogonality Between Real and Imaginary 
Part of Shaped OFDM Frequency Bins 
Even and Odd Symmetric Wave Shapes from 
Adjacent Bins are Orthogonal in Shaped OFDM 
Symmetry Considerations in Real and Imaginary 
Components of Offset Shaped OFDM Frames 
Offset OFDM 
Compare Spectra 
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-60
-40
-20
0
Spectrum of Standard OFDM With Cyclic Prefix
Normalized Frequency
L
o
g
 
M
a
g
n
i
t
u
d
e
 
(
d
B
)
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-60
-40
-20
0
Spectrum of OFDM/OQAM Without Cyclic Prefix
Normalized Frequency
L
o
g
 
M
a
g
n
i
t
u
d
e
 
(
d
B
)
OFDM and Shaped OFDM PAR 
0 1 2 3 4
0
0.002
0.004
0.006
0.008
0.01
0.012
0.014
0.016
Histogram: Standard OFDM
Normalized Amplitude (x/o
x
)
0 1 2 3 4
0
0.002
0.004
0.006
0.008
0.01
0.012
0.014
0.016
Histogram: Shaped OFDM/OQAM
Normalized Amplitude (x/o
x
)
0 1 2 3 4
10
-4
10
-3
10
-2
10
-1
10
0
Probabilty of Level Crossing
Normalized Amplitude (x/o
x
)
Standard OFDM 
Shaped OFDM/OQAM 
Complementary Codes 
Canceling Correlation Side Lobes 
Inserting CC in OFDM 
2 2
2
( ) ( ) ( ) ( ) 2 ( )
( ) ( ) 2 (A Constant Power Level)
 Since Sample Values ( ) are equal to 1
 Average Power in ( ) = N
2N
Thus Peak to Average Power Ratio 2
N
 
N N N N
N N
N
N
A n A n A n A n N n
A B N
A n
A
o
e e
e
- + - =
+ =
s =
 Now Reverse Domains
 Use Complementary Code Sequence
as amplitude of Carriers in Frequency Domain
 Then time series has
 Peak Squared Magnitude = 2N
 Average Magnitude = N 
 for Peak to Average Power Ratio = 2
CC and Digital Filters 
Equivalent Phase Coding 
PAR in CCK OFDM and Standard OFDM 
0 500 1000 1500 2000 2500 3000 3500
0
0.5
1
1.5
2
2.5
Mag Square of CC Rate 1/2 OFDM
0 500 1000 1500 2000 2500 3000 3500
0
2
4
6
8
Mag Square of Coded Rate 1/2 OFDM
Mean = 1 
Mean = 1 
Peak = 2 
Peak = 6.26 
OFDM and CC-OFDM PAR 
C-I OFDM 
Carrier Interferometry 
 OFDM with Phase Overlay 
 In Conventional OFDM 
 Rectangle Envelope in Time 
 Dirichlet Kernel in Frequency 
 In CI-OFDM 
 Rectangle Envelope in Frequency 
 Dirichlet Kernel in Time 
 Sin(x)/x in Time Domain Without Excess Bandwidth, 
 No Square-Root Nyquist Shaping Filter 
Frequency Domain Phase Slope in 
Continuous and in Sampled Data Domains 
Circularly Shifted Time Domain Dirichlet Kernels 
-10 0 10
-0.5
0
0.5
1
-10 0 10
-0.5
0
0.5
1
-10 0 10
-0.5
0
0.5
1
-10 0 10
-0.5
0
0.5
1
-10 0 10
-0.5
0
0.5
1
-10 0 10
-0.5
0
0.5
1
-10 0 10
-0.5
0
0.5
1
-10 0 10
-0.5
0
0.5
1
-10 0 10
-0.5
0
0.5
1
-10 0 10
-0.5
0
0.5
1
-10 0 10
-0.5
0
0.5
1
-10 0 10
-0.5
0
0.5
1
-10 0 10
-0.5
0
0.5
1
-10 0 10
-0.5
0
0.5
1
-10 0 10
-0.5
0
0.5
1
exp(-j 2t k 0/N) exp(-j 2t k 1/N) exp(-j 2t k 2/N) 
exp(-j 2t k 3/N) 
exp(-j 2t k 4/N) 
exp(-j 2t k 9/N) 
exp(-j 2t k 8/N) 
exp(-j 2t k 7/N) 
exp(-j 2t k 6/N) exp(-j 2t k 5/N) 
exp(-j 2t k 10/N) exp(-j 2t k 11/N) exp(-j 2t k 12/N) exp(-j 2t k 13/N) exp(-j 2t k 14/N) 
Linear Versus Circular Convolution 
Fast Circular Convolution with the FFT 
Single Symbol in CI-OFDM 
M-Symbols in CI-OFDM 
1-to-2 Interpolated Time Domain Data Points 
-20 -15 -10 -5 0 5 10 15 20
-0.2
0
0.2
0.4
0.6
0.8
1
CI-OFDM Real Time Series and 1-Modulation Sample
Time
A
m
p
l
i
t
u
d
e
-20 -15 -10 -5 0 5 10 15 20
-0.2
0
0.2
0.4
0.6
0.8
1
CI-OFDM Real Time Series and 4-Modulation Samples
Time
A
m
p
l
i
t
u
d
e
CI-OFDM Data Frame 
-25 -20 -15 -10 -5 0 5 10 15 20
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
CI-OFDM Real Time Series and 32-Modulation Samples
Time
A
m
p
l
i
t
u
d
e
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-60
-50
-40
-30
-20
-10
0
10
Spectrum
Normalized Frequency
L
o
g
 
M
a
g
n
i
t
u
d
e
 
(
d
B
)
Cyclic Prefix 
CI-OFDM Statistics 
0 1 2 3 4
0
0.005
0.01
0.015
Histogram: Standard OFDM (QPSK)
Normalized Amplitude (x/o
x
)
0 1 2 3 4
0
0.05
0.1
Histogram: CI-OFDM (QPSK)
Normalized Amplitude (x/o
x
)
0 1 2 3 4
10
-4
10
-3
10
-2
10
-1
10
0
Probabilty of Level Crossing
Normalized Amplitude (x/o
x
)
CI-OFDM Statistics 
0 1 2 3 4
0
0.005
0.01
0.015
Histogram: Standard OFDM
Normalized Amplitude (x/o
x
)
0 1 2 3 4
0
0.02
0.04
0.06
0.08
Histogram: CI-OFDM (16-QAM)
Normalized Amplitude (x/o
x
)
0 1 2 3 4
10
-4
10
-3
10
-2
10
-1
10
0
Probabilty of Level Crossing
Normalized Amplitude (x/o
x
)
Thats all Folks 
Professor harris, may I be excused?
 My brain is full.