0% found this document useful (0 votes)
200 views52 pages

Tutorial On Quaternions: Luis Ib A Nez August 13, 2001

This document discusses differentials of quaternions. It begins by explaining that defining differentials over quaternions is difficult due to the lack of commutativity. It then describes Hamilton's adopted definition of differentials as limits of equi-multiples of simultaneous and decreasing differences. This means that differentials of connected quaternions must be linearly related. The document notes that differentials do not need to be infinitesimally small, but rather provide a linear approximation. It concludes by defining the differential of a function of quaternions.

Uploaded by

Nitin Bhitre
Copyright
© Attribution Non-Commercial (BY-NC)
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
200 views52 pages

Tutorial On Quaternions: Luis Ib A Nez August 13, 2001

This document discusses differentials of quaternions. It begins by explaining that defining differentials over quaternions is difficult due to the lack of commutativity. It then describes Hamilton's adopted definition of differentials as limits of equi-multiples of simultaneous and decreasing differences. This means that differentials of connected quaternions must be linearly related. The document notes that differentials do not need to be infinitesimally small, but rather provide a linear approximation. It concludes by defining the differential of a function of quaternions.

Uploaded by

Nitin Bhitre
Copyright
© Attribution Non-Commercial (BY-NC)
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd

TUTORIAL on QUATERNIONS

Part II
Luis Ibáñez

August 13, 2001

This document was created using LYX and the LATEX Seminar style.

1
Contents

Differentials of Quaternions
Developments of Functions of Quaternions

2
Differentials of Quaternions

The difficult point in defining Differentials over Quaternions is

Lack
of the Conmutative Property.

P Q Q P

3
Adopted Definition

Following Newton’s definition of Fluxions

Hamilton [2] defined Simultaneous Differentials as

Limits of Equi-multiples of
Simultaneous and Decreasing Differences.

4
What it means ?

Given a system of connected Quaternions

q r s

the symbols

q r s

represent their Simultaneous Differences

5
What it means ?

The sums

q q r r s s

are a New system of Quaternions


satisfying the Same Laws of connexion as the Old system.

6
dq q dq 1
q dq q dq 1
p q
p q
u v
u va What it means ?
r α
z f xy
The differences ∆q ∆r ∆s start at an arbitrary size
f xy
θ

∆q ∆r ∆s

m ∆q 0 ∆r 0 ∆s 0
dq dr ds q r s q ∆q r ∆r s ∆s

7
dq q dq 1
q dq q dq 1
p q
p q
u v
u va What it means ?
r α
z f xy
Then, they are simultaneously decreased by a factor
f xy
θ

∆q ∆r ∆s
m ∆q 0 ∆r 0 ∆s 0
dq dr ds q r s q ∆q r ∆r s ∆s

8
dq q dq 1
q dq q dq 1
p q
p q
u v
u va
What it means ?
r α
z f Integer
x y multiples of the new differences are considered
f xy
2x 3x
θ

1x
∆q ∆r ∆s
m ∆q 0 ∆r 0 ∆s 0
dq dr ds q r s q ∆q r ∆r s ∆s

9
dq q dq 1
q dq q dq 1
p q
p q
u v
u va
What it means ?
r α
z f xy ...the factor is further decreased
f xy
3x
θ
2x

1x
∆q ∆r ∆s
m ∆q 0 ∆r 0 ∆s 0
dq dr ds q r s q ∆q r ∆r s ∆s

10
dq q dq 1
q dq q dq 1
p q
p q
u v
u va What it means ?
r α
z f xy ...and decreased...
f xy
θ
3x
2x

1x ∆q ∆r ∆s
m ∆q 0 ∆r 0 ∆s 0
dq dr ds q r s q ∆q r ∆r s ∆s

11
dq q dq 1
q dq q dq 1
p q
p q
u v
u va What it means ?
r α
z f xy
...and decreased...
f xy
θ 3x
2x
1x ∆q ∆r ∆s
m ∆q 0 ∆r 0 ∆s 0
dq dr ds q r s q ∆q r ∆r s ∆s

12
dq q dq 1
q dq q dq 1
p q
p q
u v
u va What it means ?
r α
z f xy
...and taken to the limit !
f xy
θ
3x
2x
∆q ∆r ∆s 1x dq dr ds
m ∆q 0 ∆r 0 ∆s 0
qrs q ∆q r ∆r s ∆s

13
Definition Revisited

If all the multiples n∆ converge to the same value


when the factor ∆ is decreased,
Then the Limit of ∆ ’s exist and they are called

Simultaneous Differentials

dq dr ds

Again....

Limits of Equi-multiples of
Simultaneous and Decreading Differences.

14
q q dq 1
q q dq 1
p q
p q Consequence of this Definition
u v
u va The Surface Differentials of this black Rectangle w h
r α
z f xy
f xy
dh
θ
qrs
dS w dh h dw
∆r s ∆s
∆q ∆r ∆s h
0 ∆s 0
dq dr ds w dw

is the sum of shaded rectangles at the sides h dw and w dh

15
Lies my Calculus Teacher told me...

Differentials are infinitesimally small...

16
The Truth is

What they have to be is linearly related

dS h dw w dh

NOT because
dw dh 0

BUT because
dw dh

is NOT LINEAR with respect to a factor applied


simultaneously to dh, dw and dS

17
dq q dq 1
q dq q dq 1
p q
p q
Differentials as Linear Approximations
u v
u va
Differentials don’t need to be SMALL
r α
z f xy They are a LINEAR APPROXIMATION [1].
f xy
θ dy
qrs
q ∆q r ∆r s ∆s
∆q ∆r ∆s
im ∆q 0 ∆r 0 ∆s 0
dq dr ds dx

dy A dx B

18
dw
dx
dy
dq 1
q dq
q dq 1 Differentials as Linear Approximations
dq q dq 1
q dq q dq 1
In ap 2D
q function z f xy the Linear Approximation is a Plane.
p q
u v
u va
r α
z f xy
f xy
θ
qrs
q ∆q r ∆r s ∆s
∆q ∆r ∆s
lim ∆q 0 ∆r 0 ∆s 0 y
dq dr ds x

19
dq
dw
dx
dy
dq 1
q dq Differentials as Linear Approximations
q dq 1
dq q dq 1
q dq q dq 1
p q dz A dx B dy C
p q
u v
u va
r α
z f xy
f xy
θ
qrs
q ∆q r ∆r s ∆s
∆q ∆r ∆s
lim ∆q 0 ∆r 0 ∆s 0 y
dq dr ds x

20
Differentials as Linear Approximations

The Differentials

dx dy dz

Can be as Large as you want


but
They have to be related by a Linear Equation

21
Differential of Functions of Quaternions

Let Q be a Function of the Quaternion variables q, r,...

Q F qr

and let

dq dr

be any Simultaneous Differentials of q, r, ...

22
Differential of Functions of Quaternions

The Simultaneous Differential of function Q is

dq dr
dQ lim n F q r F qr
n ∞ n n

where n
is an integer multiple of a particular real value.

23
Differentials in one Dimension

The well known equation

df x f x h f x
lim
dx h 0 h

Expressed according to the new definition

dx
df x lim n f x f x
n ∞ n

24
Example

2
f x x

2
dx 2
df x lim n x x
n ∞ n

2 dx dx 2
df x lim n x 2x x2
n ∞ n n2

dx 2
df x lim 2 x dx 2 x dx
n ∞ n

25
Differential of a Function of One Variable

The Differential dx is like another variable

df x g x dx

for example, given

f x x2

the differential is a function of Two Independent Variables x and dx

df x g x dx 2 x dx

26
Differentials of Functions of Quaternions

Quaternions composition (multiplication) is NOT commutative

f q q2 q q

The differential

2
dq 2
df q lim n q q
n ∞ n

Results in

df q q dq dq q

27
Differentials of Functions of Quaternions

The Quotient

df q 1
df q dq
dq

For the current example f q q2

df q 1 1
q dq dq dq q dq
dq

df q 1
q dq q dq
dq
Which is a function of q and dq

28
Comparison with Traditional Differentials

Function Quotient of Differentials


df x
Scalars f x x2 dx 2x
df q
Quaternions f q q2 dq q dq q dq 1

The Quotient of Quaternion Differentials is a new Function


of TWO INDEPENDENT variables :

q and dq

29
q dq q dq
p q
p q
u v Geometric Interpretation of the
u va Differential of the Square Function
r α
z f xy
q
f xy q C
q2
θ q dq
B
qrs s
q
∆q r ∆r s ∆s
∆q ∆r ∆s A
0 ∆r 0 ∆s 0
dq dr ds

q A B
q2 A q dq dq
B C C s 1
q q

a variation in q is represented by the Differential dq

30
q dq q dq 1
p q
p q
u v Geometric Interpretation of the
u va Differential of the Square Function
r α
z f xy
f xy q
q dq
θ
qrs s s
∆q r ∆r s ∆s
S
∆q ∆r ∆s
∆r 0 ∆s 0
dq dr ds

In order to find the Differential dq, the vector S corresponding to


the chord of Vector-Arc s is taken and shifted to the origin of the sphere.

31
q dq q dq
p q
p q
u v Geometric Interpretation of the
u va Differential of the Square Function
r α
z f xy
A A
f xy
dq
θ
qrs s S dq
∆q r ∆r s ∆s
∆q ∆r ∆s S
0 ∆r 0 ∆s 0
dq dr ds

The Quotient between vectors


S
S and A is the Quaternion dq dq
A

32
dq q dq 1
p q
p q
Geometric Interpretation of the
u v
Differential of the Square Function
u va
r α
z f xy
q dq
f xy A

dq
θ

1
qrs q
q r ∆r s ∆s dq
q 1
dq
∆q ∆r ∆s 1
∆r 0 ∆s 0
dq q dq 1
dq dr ds

q is composed with dq 1 by The resulting Vector-Arc q dq 1


forming a spherical triangle with can be further composed with dq
their corresponding Vector-Arcs by using another spherical triangle.

33
p q
p q Geometric Interpretation of the
u v Differential of the Square Function
u va
r α
z f xy
f xy
θ
qrs 1
1
q r ∆r s ∆s dq dq
q q
∆q ∆r ∆s dq dq
r 0 ∆s 0 q dq q dq 1

dq dr ds q q

The sum of q and dq q dq 1 is performed by finding first a common


denominator vector, then adding the two vector in the numerator.

34
Sum of Reciprocals (a property)

1 1
Rq q
q

1 1 1 1
R p Rq p q
p q

1 1 1 1 1 1 1 1
q p p q
p q q p q p q p

1 1 1 1
p q
p q q p

35
Differential of the Reciprocal

1
f q Rq q

1
dq 1
df q lim n q q
n ∞ n

1
dq dq 1
df q lim n q q q q
n ∞ n n

1 1 1 1
df q q dq q q dq q

36
Comparison with Traditional Differentials

Function Quotient of Differentials


1 df x 2
Scalars f x x dx x
1 df q 1 1 1
Quaternions f q q dq q dq q dq

The Quotient of Quaternion Differentials is a new Function


of TWO INDEPENDENT variables :

q and dq

37
Quotient of Differentials

The Quotient between two Differentials can be separated in


Tensor and Versor parts

df q T df q U df q
dq T dq U dq

The Differentials d f q and dq are Equi-Multiples,


so scaling dq will scale d f q by the same factor.
Quotients of Differentials are Invariant to Scale changes in their Tensors

38
Quotient of Differentials

In the example f q q2
The Quotient of Differentials

df q 1
q dq q dq
dq
Can be reduced to

df q 1
q U dq q U dq
dq

That only depends on dq ’s Direction represented by the Versor U dq

39
Partial Differentials

Given a function of several quaternion variables

Q f qrs

Its Differential satisfies

dQ dq Q dr Q ds Q

each Partial Differential dx Q is obtained by differentiating


with respect to x as if the other variables were constant.

40
Succesive Differentials

For example, given the Quaternion function

f q q2 q q

The first Differential is

df q q dq dq q

Taking the Differential of this last expression,


where q and dq are considered as two independent variables

d2 f q dq dq q d2q d2q q dq dq

41
Successive Differentials

The Second Differential of


f q q2
is then reduced to

d2 f q q d2q d2q q 2 dq dq

Which is a function of THREE independent Quaternion variables

q dq d 2 q

None of them necessarily SMALL

42
Taylor’s Series Extended to Quaternions

Having that

dm f q d dm 1
f q

The Taylor’s Series Expansion can be applied to functions of Quaternions

df q d2 f q d3 f q d4 f q
f q dq f q
1! 2! 3! 4!

Where f q dq will be a function of q dq d 2 q d 3 q Quaternion


variables NOT necessarily SMALL

43
Taylor’s Series Approximation

The Tensor of the Quaternion Variables

q dq d 2 q d 3 q

can be scaled by a Scalar factor x to produce an Approximation

x x2 2 x3 3
Fx f q xdq f q df q d f q d f q
1! 2! 3!

44
dq q dq
q dq q dq 1

Operations
p q in Versor Space
u v
u va
Composition of Versors is equivalent to
r α
z f xy
f xy
q
θ p q
qrs
q ∆q r ∆r s ∆s
p
∆q ∆r ∆s
lim ∆q 0 ∆r 0 ∆s 0
dq dr ds

sum of their Vector-Arcs on the Unit Sphere Surface.


This is a Non-Commutative operation

45
dx
dy
dq 1
q dq
q dq 1 Operations in Versor Space
dq q dq 1
q dq q dq 1
p q Increments of Versor’s Angle is equivalent to Exponentiation
p q
for example, in order to double the angle
u v
u va the versor is applied twice, which is q q q2
r α
z f xy
f xy
θ
qrs
q ∆q r ∆r s ∆s q q 

q q q1 2
∆q ∆r ∆s
0 ∆r 0 ∆s 0 q2 q1 5

dq dr ds

Like in Complex numbers

eiθ cosθ isinθ


46
q dq 1
dq q dq 1
dq q dq 1
p q Operations in Versor Space

u v Subtraction of Vector-Arcs is equivalent to


u va
a Quotient of Versors
r α
z f xy p 1
p q
f xy q
q
θ p
qrs p 1
q p q q
q r ∆r s ∆s q
p q
∆q ∆r ∆s p q 1
q
∆r 0 ∆s 0
p
dq dr ds

47
dq q dq
dq q dq 1
p q
Versor Spherical Linear Interpolation
u v
u va
Sperical Linear Interpolation (Slerp)

z f xy α
p
q 1 r α q
f xy q
q
θ p
qrs p q r 0 q
q r ∆r s ∆s r 1 p
∆q ∆r ∆s r α
α 01
∆r 0 ∆s 0
dq dr ds

The Quotient qp produce the Quaternion that relates p with q.


Exponent α allows to regulate how much of this Quotient is applied

48
dq q dq 1
q dq q dq 1
p q
Optimization
p q of Versor Functions
u v
u v a of Quaternions is restricted to Versors
If the Space
r α
z f xy
f xy q
B
θ
qrs
q ∆q r ∆r s ∆s A
∆q ∆r ∆s
lim ∆q 0 ∆r 0 ∆s 0
dq dr ds

The only valid operations are those that keep the end of vectors
in the surface of the Unit Sphere

49
dq q dq 1
q dq q dq 1
p q
Optimization
p q of Versor Functions
u v
a
u vThe Versor Space is a 2D Space
r α
z f xy
f xy
q
θ
qrs
q ∆q r ∆r s ∆s
u v
∆q ∆r ∆s
lim ∆q 0 ∆r 0 ∆s 0
dq dr ds

In order to enforce that Variations of a Versor result in another versor,


the only valid operations are compositions with Versors, (e.g. u and v )

50
q dq 1
dq q dq 1
dq q dq 1
p q Optimization of Versor Functions
p q
u v
u va Gradient Descent-like Optimization Method
r α
z f xy
f xy q
q q
θ r
qrs
r ∆r s ∆s v v v
u u u
∆q ∆r ∆s
0 ∆s 0 v/u (v/u)^a (v/u)^a
dq dr ds

v α f u q
r u q a
u f u q f v q

51
References
[1] C. T. J. Dodson and T. Poston. Tensor Geometry. Graduate Texts in
Mathematics. Springer-Verlag, second edition, 1990.
[2] W.R. Hamilton. Elements of Quaternions, volume I. Chelsea
Publishing Company, third edition, 1969. The original was published
in 1866.

52

You might also like