Login   Register  
PHP Classes

File: examples/case-studies/ai/neural/neural_workflow_composer/neural_workflow_composer.php

Recommend this page to a friend!
  Classes of ASCOOS CMS   Ascoos OS   examples/case-studies/ai/neural/neural_workflow_composer/neural_workflow_composer.php   Download  
File: examples/case-studies/ai/neural/neural_workflow_composer/neural_workflow_composer.php
Role: Example script
Content typex: text/plain
Description: Neural Workflow Composer: Macro Execution via Neural Prediction This case study demonstrates how **Ascoos OS** can intelligently execute macros based on system history using neural networks. The system learns from past performance metrics and predicts optimal macro actions.
Class: Ascoos OS
A PHP Web 5.0 Kernel for decentralized web and IoT
Author: By
Last change:
Date: 26 days ago
Size: 1,804 bytes
 

Contents

Class file image Download
<?php
/**
 * @ASCOOS-NAME : Ascoos OS
 * @ASCOOS-VERSION : 26.0.0
 * @ASCOOS-SUPPORT : [email protected]
 * @ASCOOS-BUGS : https://issues.ascoos.com
 *
 * @desc <English> Learns from system history and composes optimal macro workflows using neural networks.
 * @desc <Greek> ???????? ??? ?? ???????? ??? ?????????? ??? ???????? ????????? ???????????? ?? ????? ?????????? ???????.
 *
 * @since PHP 8.2.0
 */
declare(strict_types=1);

use
ASCOOS\OS\Kernel\AI\NeuralNet\TNeuralNetworkHandler;
use
ASCOOS\OS\Kernel\Arrays\Macros\TMacroHandler;

// ? ???????? ???????? ??????????
$systemData = [
    [
0.2, 0.8, 0.5], // CPU, RAM, Disk
   
[0.9, 0.1, 0.3],
    [
0.4, 0.6, 0.7]
];
$actions = [1, 0, 1]; // 1 = ???????? macro, 0 = ?????????

// ? ?????????? ???????
$composer = new TNeuralNetworkHandler();
$composer->compile([
    [
'input' => 3, 'output' => 4, 'activation' => 'relu'],
    [
'input' => 4, 'output' => 1, 'activation' => 'sigmoid']
]);
$composer->fit($systemData, $actions, epochs: 1000, lr: 0.01);

// ? ???????? ????????? ??????????
$currentState = [0.6, 0.7, 0.4];

// ? ???????? ???????? ?????????
$score = $composer->predictNetwork([$currentState])[0];

// ? ???????? macro ?? ? ???????? ????? ??????
if ($score > 0.5) {
   
$macroHandler = new TMacroHandler();
   
$macroHandler->addMacro(fn() => print("? Executing optimized macro"), [], delay: 0, priority: 1);
   
$macroHandler->runNext();
} else {
    print(
"?? Macro skipped based on neural prediction\n");
}