The MongoDB Search query returns information about the $search query plan and execution statistics when the query is run with the explain method enabled. When you run a query with explain, MongoDB Search returns a BSON document containing statistics and metadata that describes how the query was run internally in Lucene.
Syntax
db.<myCollection>.explain("<verbosity>").aggregate([ { $search: { "<operator>": { "<operator-options>" } } } ])
Verbosity
Verbosity mode controls the behavior of explain and the amount of information returned. Value can be one of the following, in order of decreasing verbosity:
Information about the query plan including the | |
Information about the query plan including the | |
queryPlanner (default) | Information about the query plan. Does not include the |
Output
The query with the explain method returns the following fields in the stages.$_internalSearchMongotRemote object:
Option | Type | Purpose |
|---|---|---|
| document | Contains the query that you ran. |
| document | Contains the |
| array of integers | Contains the size of each batch of documents that |
Explain Results
The explain method returns a BSON document with the following fields in the explain document.
Option | Type | Necessity | Purpose |
|---|---|---|---|
| document | Optional | Describes the execution statistics for the collector. If |
| document | Optional | Details about the highlight execution for the query. This is returned only if you specified highlighting in the query. |
| array of documents | Optional | Contains per index partition details. This is only returned if you configured two or more index partitions. |
| document | Optional | Contains useful metadata. |
| document | Optional | Describes the execution statistics for the query. This is not returned. If |
| document | Optional | Details related to retrieving per-document data from Lucene after query execution. This is not returned for |
| document | Optional | Details the resource usage of the query when it was executed. This is not returned for |
collectors
The collectors BSON document contains the following fields:
Field | Type | Necessity | Purpose |
|---|---|---|---|
| document | Required | Statistics of all collectors of the query. Statistics reported represent either the maximum value across all collectors used in the query or a sum of the statistic across all the sub-collectors. The timing statistics are summed to reflect the total time spent across all collectors for the entire query. To learn more, see |
| document | Optional | |
| document | Optional |
allCollectorStats
The allCollectorStats BSON document describes collector statistics across all collectors specified in the query, including facet and sort. It contains the following keys:
Field | Description |
|---|---|
| Tracks the duration and number of results collected by the collector. |
| Statistics tracking the total duration and the number of times a |
| Statistics tracking the total duration and number of times a scorer was set on the collector. |
facet
The facet is a BSON document that details query and execution statistics when you specify a facet in the query. It contains the following fields:
Option | Type | Necessity | Purpose |
|---|---|---|---|
| document | Optional | Shows statistics only for the |
| document | Optional | Shows statistics related to creating the internal Lucene object that holds all of the facet groupings. It contains |
| document | Required | Maps the field being faceted on to their cardinalities for both the documents that matched the query and across the entire Lucene index. It provides the following cardinality information for each field:
|
sort
The sort is a BSON document that details query and execution statistics when you specify a sort in the query. It contains the following fields:
Option | Type | Necessity | Purpose |
|---|---|---|---|
| document | Optional | Tracks statistics related to
|
| document | Required | Maps the field being sorted on to the list of data types present in the index for the field. |
highlight
The highlight is a BSON document that details query and execution statistics when you specify highlighting in the query. It contains the following fields:
Option | Type | Necessity | Purpose |
|---|---|---|---|
| List<String> | Required | List of all the highlighted fields. If you specified a wildcard path in the |
| QueryExecutionArea | Optional | Invocation and timing statistics related to setting up and executing highlights. It contains the following fields:
|
indexPartitionExplain
the indexPartitionExplain contains Explain Results for each index partition. The top-level collectors and query are inside the explain information of each index partition and absent at the top-level.
metadata
The metadata contains helpful metadata, such as the following:
Field | Type | Necessity | Purpose |
|---|---|---|---|
| String | Optional | Current version of |
| String | Optional | Human readable label that identifies the |
| String | Optional | MongoDB Search index used in the query. |
| Document | Optional | Cursor options given to |
| Integer | Optional | Total number of index objects in the index including deleted documents. |
query
The query BSON document describes the execution statistics for the query. It contains the following fields:
Field | Type | Necessity | Purpose |
|---|---|---|---|
| string | Optional | Path to the operator, only if it isn't the root. |
| string | Required | Name of the Lucene Query that the MongoDB Search operator created. See |
| string | Optional | MongoDB Search analyzer used with the query. |
| document | Required | Lucene query information. See |
| document | Optional |
|
args
The explain response of a search command contains information about the query executed with that command. The response in the args field includes structured details of what Lucene queries MongoDB Search executed to satisfy a $search query.
This section contains:
Some of the Lucene queries that MongoDB Search operators create
Lucene query options that are included in the structured summary
Lucene query structured summary example for each Lucene query type
Note
About the Examples
The examples in this section are based on queries run against the sample datasets with the queryPlanner verbosity mode. In the example response, the:
mongotQueryfield shows the MongoDB Search operator and the query that was run.explain.typefield shows the Lucene Query that the operator created.
For complete examples, see Examples.
BooleanQueryFor Lucene
BooleanQuery, the structured summary includes details on the following options:FieldTypeNecessityDescriptionmustOptional
Clauses which must match.
mustNotOptional
Clauses which must not match.
shouldOptional
Clauses which should match.
filterOptional
Clauses which must all match.
minimumShouldMatchInteger
Optional
The minimum number of
shouldclauses which must match.
ConstantScoreQueryFor constant score queries, the structured summary includes details on the following options:
FieldTypeNecessityDescriptionqueryRequired
Child of the
ConstantScoreQuery.The following example shows the
explainresponse for a query run against thesample_airbnb.listingsAndReviewscollection.1 { 2 "stages" : [ 3 { 4 "$_internalSearchMongotRemote" : { 5 "mongotQuery" : { 6 "equals" : { 7 "path" : "host.host_identity_verified", 8 "value" : true 9 } 10 }, 11 "explain" : { 12 "type" : "ConstantScoreQuery", 13 "args" : { 14 "query" : { 15 "type" : "TermQuery", 16 "args" : { 17 "path" : "host.host_identity_verified", 18 "value" : "T" 19 } 20 } 21 } 22 } 23 } 24 }, 25 { 26 "$_internalSearchIdLookup" : { } 27 } 28 ], 29 ... 30 }
FunctionScoreQueryFor Lucene
FunctionScoreQueryqueries, the structured summary includes details on the following options:FieldTypeNecessityDescriptionscoreFunctionstring
Required
Scoring expression used in the query.
queryRequired
The query.
The following example shows the
explainresponse for a query run against thesample_airbnb.listingsAndReviewscollection.1 { 2 "stages" : [ 3 { 4 "$_internalSearchMongotRemote" : { 5 "mongotQuery" : { 6 "near" : { 7 "path" : "accomodates", 8 "origin" : 8, 9 "pivot" : 2 10 } 11 }, 12 "explain" : { 13 "type" : "BooleanQuery", 14 "args" : { 15 "must" : [ ], 16 "mustNot" : [ ], 17 "should" : [ 18 { 19 "type" : "BooleanQuery", 20 "args" : { 21 "must" : [ ], 22 "mustNot" : [ ], 23 "should" : [ 24 { 25 "type" : "FunctionScoreQuery", 26 "args" : { 27 "scoreFunction" : "expr(pivot / (pivot + abs(origin - value)))", 28 "query" : { 29 "type" : "LongDistanceFeatureQuery", 30 "args" : { }, 31 "stats" : { } 32 } 33 } 34 } 35 ], 36 "filter" : [ 37 { 38 "type" : "PointRangeQuery", 39 "args" : { 40 "path" : "accomodates", 41 "representation" : "double", 42 "gte" : 8.000000000000002, 43 "lte" : NaN 44 } 45 } 46 ], 47 "minimumShouldMatch" : 0 48 } 49 }, 50 { 51 "type" : "LongDistanceFeatureQuery", 52 "args" : { }, 53 "stats" : { } 54 } 55 ], 56 "filter" : [ ], 57 "minimumShouldMatch" : 0 58 } 59 } 60 }, 61 ... 62 }, 63 ... 64 ], 65 ... 66 }
LatLonPointDistanceQueryFor Lucene
LatLonPointDistanceQueryqueries, the response contains anstatsonly.The following example shows the
explainresponse for a query run against thesample_airbnb.listingsAndReviewscollection.1 { 2 "stages" : [ 3 { 4 "$_internalSearchMongotRemote" : { 5 "mongotQuery" : { 6 "geoWithin" : { 7 "path" : "address.location", 8 "circle" : { 9 "radius" : 4800, 10 "center" : { 11 "type" : "Point", 12 "coordinates" : [ 13 -122.419472, 14 37.765302 15 ] 16 } 17 } 18 } 19 }, 20 "explain" : { 21 "type" : "LatLonPointDistanceQuery", 22 "args" : { } 23 } 24 } 25 }, 26 ... 27 ], 28 ... 29 }
LatLonShapeQueryFor Lucene
LatLonShapeQueryqueries, the response contains anstatsonly.The following example shows the
explainresponse for a query run against thesample_airbnb.listingsAndReviewscollection.1 { 2 "stages" : [ 3 { 4 "$_internalSearchMongotRemote" : { 5 "mongotQuery" : { 6 "geoShape" : { 7 "path" : "address.location", 8 "relation" : "within", 9 "geometry" : { 10 "type" : "Polygon", 11 "coordinates" : [ 12 [ 13 [ -74.3994140625, 40.5305017757 ], 14 [ -74.7290039063, 40.5805846641 ], 15 [ -74.7729492188, 40.9467136651 ], 16 [ -74.0698242188, 41.1290213475 ], 17 [ -73.65234375, 40.9964840144 ], 18 [ -72.6416015625, 40.9467136651 ], 19 [ -72.3559570313, 40.7971774152 ], 20 [ -74.3994140625, 40.5305017757 ] 21 ] 22 ] 23 } 24 } 25 }, 26 "explain" : { 27 "type" : "LatLonShapeQuery", 28 "args" : { } 29 } 30 }, 31 ... 32 }, 33 ... 34 ], 35 ... 36 }
LongDistanceFeatureQueryFor Lucene
LongDistanceFeatureQuery, the response contains anstatsonly.The following example shows the
explainresponse for a query run against thesample_mflix.moviescollection.1 { 2 "stages" : [ 3 { 4 "$_internalSearchMongotRemote" : { 5 "mongotQuery" : { 6 "near" : { 7 "path" : "released", 8 "origin" : ISODate("1915-09-13T00:00:00Z"), 9 "pivot" : 7776000000 10 } 11 }, 12 "explain" : { 13 "type" : "LongDistanceFeatureQuery", 14 "args" : { } 15 } 16 }, 17 ... 18 }, 19 ... 20 ], 21 ... 22 }
MultiTermQueryConstantScoreWrapperFor Lucene
MultiTermQueryConstantScoreWrapperqueries, the structured summary includes details on the following arguments:FieldTypeNecessityDescriptionqueriesList<Explain Results>
Required
List of queries.
The following example shows the
explainresponse for a query run against thesample_airbnb.listingsAndReviewscollection.1 { 2 "stages" : [ 3 { 4 "$_internalSearchMongotRemote" : { 5 "mongotQuery" : { 6 "regex" : { 7 "path" : "access", 8 "query" : "full(.{0,5})", 9 "allowAnalyzedField" : true 10 } 11 }, 12 "explain" : { 13 "type" : "MultiTermQueryConstantScoreWrapper", 14 "args" : { 15 "queries" : [ 16 { 17 "type" : "DefaultQuery", 18 "args" : { 19 "queryType" : "RegexpQuery" 20 } 21 } 22 ] 23 } 24 } 25 }, 26 ... 27 }, 28 ... 29 ], 30 ... 31 }
PhraseQueryFor Lucene
PhraseQueryqueries, the structured summary includes details on the following arguments:FieldTypeNecessityDescriptionpathString
Required
Indexed field to search.
queryString
Required
String or strings to search for.
slopNumber
Required
Allowable distance between words in the
queryphrase.The following example shows the
explainresponse for a query run against thesample_airbnb.listingsAndReviewscollection.1 { 2 "stages" : [ 3 { 4 "$_internalSearchMongotRemote" : { 5 "mongotQuery" : { 6 "phrase" : { 7 "path" : "description", 8 "query" : "comfortable apartment", 9 "slop" : 2 10 } 11 }, 12 "explain" : { 13 "type" : "PhraseQuery", 14 "args" : { 15 "path" : "description", 16 "query" : "[comfortable, apartment]", 17 "slop" : 2 18 } 19 } 20 }, 21 ... 22 }, 23 ... 24 ], 25 ... 26 }
PointRangeQueryFor Lucene
PointRangeQueryqueries, the structured summary includes details on the following arguments:FieldTypeNecessityDescriptionpathString
Required
Indexed field to search.
representationString
Optional
Numeric representation. Queries over date-typed data do not include representation.
gteNumber
Optional
Lower bound of the query.
lteNumber
Optional
Upper bound of the query.
The following example shows the
explainresponse for a query run against thesample_airbnb.listingsAndReviewscollection.1 { 2 "stages" : [ 3 { 4 "$_internalSearchMongotRemote" : { 5 "mongotQuery" : { 6 "range" : { 7 "path" : "number_of_reviews", 8 "gt" : 5 9 } 10 }, 11 "explain" : { 12 "type" : "BooleanQuery", 13 "args" : { 14 "must" : [ ], 15 "mustNot" : [ ], 16 "should" : [ 17 { 18 "type" : "PointRangeQuery", 19 "args" : { 20 "path" : "number_of_reviews", 21 "representation" : "double", 22 "gte" : 5.000000000000001 23 } 24 }, 25 { 26 "type" : "PointRangeQuery", 27 "args" : { 28 "path" : "number_of_reviews", 29 "representation" : "int64", 30 "gte" : NumberLong(6) 31 } 32 } 33 ], 34 "filter" : [ ], 35 "minimumShouldMatch" : 0 36 } 37 } 38 }, 39 ... 40 }, 41 ... 42 ], 43 ... 44 }
TermQueryFor term queries, the structured summary includes details on the following arguments:
FieldTypeNecessityDescriptionpathString
Required
Indexed field to search.
valueString
Required
String to search for.
The following example shows the
explainresponse for a query run against thesample_airbnb.listingsAndReviewscollection.1 { 2 "stages" : [ 3 { 4 "$_internalSearchMongotRemote" : { 5 "mongotQuery" : { 6 "queryString" : { 7 "defaultPath" : "summary", 8 "query" : "quiet" 9 } 10 }, 11 "explain" : { 12 "type" : "TermQuery", 13 "args" : { 14 "path" : "summary", 15 "value" : "quiet" 16 } 17 } 18 }, 19 ... 20 }, 21 ... 22 ], 23 ... 24 }
DefaultLucene queries that are not explicitly defined by another Lucene query are serialized using the default query. The structured summary includes details on the following option:
FieldTypeNecessityDescriptionqueryTypeString
Required.
Type of Lucene query.
The following example shows the
explainresponse for a query run against thesample_airbnb.listingsAndReviewscollection.1 { 2 "stages" : [ 3 { 4 "$_internalSearchMongotRemote" : { 5 "mongotQuery" : { 6 "near" : { 7 "origin" : { 8 "type" : "Point", 9 "coordinates" : [ 10 -8.61308, 11 41.1413 12 ] 13 }, 14 "pivot" : 1000, 15 "path" : "address.location" 16 } 17 }, 18 "explain" : { 19 "type" : "DefaultQuery", 20 "args" : { 21 "queryType" : "LatLonPointDistanceFeatureQuery" 22 } 23 } 24 }, 25 ... 26 }, 27 ... 28 ], 29 ... 30 }
stats
The explain response for executionStats and allPlansExecution verbosity modes includes a stats field that contains information on how much time a query spends in various stages of query execution.
Timing Breakdown
The timing breakdown describes execution statistics pertinent to an areas of query execution. The following fields show the timing breakdown:
Field | Type | Description |
|---|---|---|
| Long | |
| Document | Number of invocations of tasks included in this area. The value is a map of task names to their invocation count. |
Areas of Query
Statistics are available for the following areas of query:
Option | Description | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Statistics related to the execution of the Lucene query. There are two tasks whose invocation counts are enumerated in this area:
The time spent in this area is related to the structure of the query, and is not based on the number of results that are iterated through and scored. For example: | |||||||||||
| Statistics related to iterating over and matching result documents. This statistic shows the time it takes to determine which document is the next match. Time spent matching results can vary significantly depending on the nature of the query. There are two tasks whose invocation counts are enumerated in this area:
For example: | |||||||||||
| Statistics related to scoring documents in the result set. There are two tasks whose invocation counts are enumerated in this area:
For example: |
resultMaterialization
The resultMaterialization document shows the amount of time mongot takes to accomplish the following:
Retrieve result data stored in Lucene in the form of either
_idorstoredSource.Serialize the data into BSON format before sending it to
mongod.
To learn more, see stats.
resourceUsage
The resourceUsage document shows the resource used for running the query. It contains the following fields:
Field | Type | Necessity | Purpose |
|---|---|---|---|
| Long | Required | Number of major page faults, which occur when the system can't find the required data in memory resulting in reading from the backing store such as disk, during query execution. |
| Long | Required | Number of minor page faults, which occur when the data is in the page cache, but hasn't yet been mapped to the process' page table. |
| Long | Required | Amount of CPU time, in milliseconds, spent in user space. |
| Long | Required | Amount of CPU time, in milliseconds, spent in system space. |
| Integer | Required | Maximum number of threads that |
| Integer | Required | Total number of batches that |
Examples
The following examples use the movies collection in the sample_mflix database.
Tip
If you've already loaded the sample dataset, refer to the MongoDB Search Quick Start tutorial to create an index definition and run MongoDB Search queries.
allPlansExecution
The following example uses different operators to query the title field with the allPlansExecution verbosity mode.
db.movies.explain("allPlansExecution").aggregate([ { $search: { "text": { "path": "title", "query": "yark", "fuzzy": { "maxEdits": 1, "maxExpansions": 100, } } } } ])
1 { 2 explainVersion: '1', 3 stages: [ 4 { 5 '$_internalSearchMongotRemote': { 6 mongotQuery: { 7 text: { 8 path: 'title', 9 query: 'yark', 10 fuzzy: { maxEdits: 1, maxExpansions: 100 } 11 } 12 }, 13 explain: { 14 query: { 15 type: 'BooleanQuery', 16 args: { 17 must: [], 18 mustNot: [], 19 should: [ 20 { 21 type: 'BoostQuery', 22 args: { 23 query: { 24 type: 'TermQuery', 25 args: { path: 'title', value: 'mark' }, 26 stats: { 27 context: { millisElapsed: 0 }, 28 match: { millisElapsed: 0 }, 29 score: { millisElapsed: 0 } 30 } 31 }, 32 boost: 0.75 33 }, 34 stats: { 35 context: { 36 millisElapsed: 0.209279, 37 invocationCounts: { 38 createWeight: Long('2'), 39 createScorer: Long('18') 40 } 41 }, 42 match: { 43 millisElapsed: 0.028079, 44 invocationCounts: { nextDoc: Long('22') } 45 }, 46 score: { 47 millisElapsed: 0.01706, 48 invocationCounts: { score: Long('16') } 49 } 50 } 51 }, 52 { 53 type: 'BoostQuery', 54 args: { 55 query: { 56 type: 'TermQuery', 57 args: { path: 'title', value: 'yard' }, 58 stats: { 59 context: { millisElapsed: 0 }, 60 match: { millisElapsed: 0 }, 61 score: { millisElapsed: 0 } 62 } 63 }, 64 boost: 0.75 65 }, 66 stats: { 67 context: { 68 millisElapsed: 0.136254, 69 invocationCounts: { 70 createWeight: Long('2'), 71 createScorer: Long('14') 72 } 73 }, 74 match: { 75 millisElapsed: 0.008556, 76 invocationCounts: { nextDoc: Long('10') } 77 }, 78 score: { 79 millisElapsed: 0.006096, 80 invocationCounts: { score: Long('6') } 81 } 82 } 83 }, 84 { 85 type: 'BoostQuery', 86 args: { 87 query: { 88 type: 'TermQuery', 89 args: { path: 'title', value: 'york' }, 90 stats: { 91 context: { millisElapsed: 0 }, 92 match: { millisElapsed: 0 }, 93 score: { millisElapsed: 0 } 94 } 95 }, 96 boost: 0.75 97 }, 98 stats: { 99 context: { 100 millisElapsed: 0.303568, 101 invocationCounts: { 102 createWeight: Long('2'), 103 createScorer: Long('18') 104 } 105 }, 106 match: { 107 millisElapsed: 0.374856, 108 invocationCounts: { nextDoc: Long('62') } 109 }, 110 score: { 111 millisElapsed: 0.892383, 112 invocationCounts: { score: Long('56') } 113 } 114 } 115 }, 116 { 117 type: 'BoostQuery', 118 args: { 119 query: { 120 type: 'TermQuery', 121 args: { path: 'title', value: 'ark' }, 122 stats: { 123 context: { millisElapsed: 0 }, 124 match: { millisElapsed: 0 }, 125 score: { millisElapsed: 0 } 126 } 127 }, 128 boost: 0.6666666269302368 129 }, 130 stats: { 131 context: { 132 millisElapsed: 8.379562, 133 invocationCounts: { 134 createWeight: Long('2'), 135 createScorer: Long('10') 136 } 137 }, 138 match: { 139 millisElapsed: 2.073272, 140 invocationCounts: { nextDoc: Long('6') } 141 }, 142 score: { 143 millisElapsed: 0.004063, 144 invocationCounts: { score: Long('4') } 145 } 146 } 147 }, 148 { 149 type: 'BoostQuery', 150 args: { 151 query: { 152 type: 'TermQuery', 153 args: { path: 'title', value: 'dark' }, 154 stats: { 155 context: { millisElapsed: 0 }, 156 match: { millisElapsed: 0 }, 157 score: { millisElapsed: 0 } 158 } 159 }, 160 boost: 0.75 161 }, 162 stats: { 163 context: { 164 millisElapsed: 0.679029, 165 invocationCounts: { 166 createWeight: Long('2'), 167 createScorer: Long('18') 168 } 169 }, 170 match: { 171 millisElapsed: 5.500198, 172 invocationCounts: { nextDoc: Long('172') } 173 }, 174 score: { 175 millisElapsed: 2.465502, 176 invocationCounts: { score: Long('166') } 177 } 178 } 179 }, 180 { 181 type: 'BoostQuery', 182 args: { 183 query: { 184 type: 'TermQuery', 185 args: { path: 'title', value: 'park' }, 186 stats: { 187 context: { millisElapsed: 0 }, 188 match: { millisElapsed: 0 }, 189 score: { millisElapsed: 0 } 190 } 191 }, 192 boost: 0.75 193 }, 194 stats: { 195 context: { 196 millisElapsed: 0.221919, 197 invocationCounts: { 198 createWeight: Long('2'), 199 createScorer: Long('18') 200 } 201 }, 202 match: { 203 millisElapsed: 0.116139, 204 invocationCounts: { nextDoc: Long('60') } 205 }, 206 score: { 207 millisElapsed: 0.056817, 208 invocationCounts: { score: Long('54') } 209 } 210 } 211 } 212 ], 213 filter: [], 214 minimumShouldMatch: 0 215 }, 216 stats: { 217 context: { 218 millisElapsed: 25.303419, 219 invocationCounts: { createWeight: Long('2'), createScorer: Long('12') } 220 }, 221 match: { 222 millisElapsed: 10.533183, 223 invocationCounts: { nextDoc: Long('308') } 224 }, 225 score: { 226 millisElapsed: 5.501189, 227 invocationCounts: { score: Long('302') } 228 } 229 } 230 }, 231 collectStats: { 232 allCollectorStats: { 233 millisElapsed: 6.735626, 234 invocationCounts: { 235 collect: Long('302'), 236 competitiveIterator: Long('6'), 237 setScorer: Long('6') 238 } 239 }, 240 facet: { collectorStats: { millisElapsed: 0 } } 241 }, 242 resultMaterialization: { 243 stats: { 244 millisElapsed: 176.613905, 245 invocationCounts: { retrieveAndSerialize: Long('2') } 246 } 247 }, 248 metadata: { 249 <hostname>.mongodb.netmongotVersion: '1.42.0', 250 mongotHostName: '<hostname>.mongodb.net', 251 indexName: 'default', 252 cursorOptions: { batchSize: 108, requiresSearchSequenceToken: false }, 253 totalLuceneDocs: 21349 254 }, 255 resourceUsage: { 256 majorFaults: Long('99'), 257 minorFaults: Long('192'), 258 userTimeMs: Long('80'), 259 systemTimeMs: Long('10'), 260 maxReportingThreads: 1, 261 numBatches: 2 262 } 263 }, 264 requiresSearchMetaCursor: false, 265 internalMongotBatchSizeHistory: [ Long('108'), Long('162') ] 266 }, 267 nReturned: Long('151'), 268 executionTimeMillisEstimate: Long('83') 269 }, 270 { 271 '$_internalSearchIdLookup': { 272 subPipeline: [ 273 { '$match': { _id: { '$eq': '_id placeholder' } } } 274 ], 275 totalDocsExamined: Long('151'), 276 totalKeysExamined: Long('151'), 277 numDocsFilteredByIdLookup: Long('0') 278 }, 279 nReturned: Long('151'), 280 executionTimeMillisEstimate: Long('88') 281 } 282 ], 283 queryShapeHash: '6FD3791F785FA329D4ECD1171E0E5AF6772C18F5F0A7A50FC416D080A93C8CB7', 284 serverInfo: { 285 host: '<hostname>.mongodb.net', 286 port: 27017, 287 version: '8.2.0', 288 gitVersion: '13e629eeccd63f00d17568fc4c12b7530fa34b54' 289 }, 290 serverParameters: { 291 ... 292 }, 293 command: { 294 aggregate: 'movies', 295 pipeline: [ 296 { 297 '$search': { 298 text: { 299 path: 'title', 300 query: 'yark', 301 fuzzy: { maxEdits: 1, maxExpansions: 100 } 302 } 303 } 304 } 305 ], 306 cursor: {}, 307 '$db': 'sample_mflix' 308 }, 309 ok: 1, 310 '$clusterTime': { 311 clusterTime: Timestamp({ t: 1758295936, i: 19 }), 312 signature: { 313 hash: Binary.createFromBase64('+CanjrL9jdXPTLa2sUaNPtImkBc=', 0), 314 keyId: Long('7551379485140975621') 315 } 316 }, 317 operationTime: Timestamp({ t: 1758295936, i: 19 }) 318 }
db.movies.explain("allPlansExecution").aggregate([ { $search: { "text": { "path": "title", "query": "prince" }, "highlight": { "path": "title", "maxNumPassages": 1, "maxCharsToExamine": 40 } } }, { $project: { "description": 1, "_id": 0, "highlights": { "$meta": "searchHighlights" } } } ])
1 { 2 explainVersion: '1', 3 stages: [ 4 { 5 '$_internalSearchMongotRemote': { 6 mongotQuery: { 7 text: { path: 'title', query: 'prince' }, 8 highlight: { path: 'title', maxNumPassages: 1, maxCharsToExamine: 40 } 9 }, 10 explain: { 11 query: { 12 type: 'TermQuery', 13 args: { path: 'title', value: 'prince' }, 14 stats: { 15 context: { 16 millisElapsed: 9.880819, 17 invocationCounts: { createWeight: Long('1'), createScorer: Long('6') } 18 }, 19 match: { 20 millisElapsed: 3.566358, 21 invocationCounts: { nextDoc: Long('28') } 22 }, 23 score: { 24 millisElapsed: 2.762687, 25 invocationCounts: { score: Long('25') } 26 } 27 } 28 }, 29 collectStats: { 30 allCollectorStats: { 31 millisElapsed: 3.238152, 32 invocationCounts: { 33 collect: Long('25'), 34 competitiveIterator: Long('3'), 35 setScorer: Long('3') 36 } 37 }, 38 facet: { collectorStats: { millisElapsed: 0 } } 39 }, 40 highlight: { 41 resolvedHighlightPaths: [ '$type:string/title' ], 42 stats: { 43 millisElapsed: 157.543967, 44 invocationCounts: { 45 executeHighlight: Long('1'), 46 setupHighlight: Long('1') 47 } 48 } 49 }, 50 resultMaterialization: { 51 stats: { 52 millisElapsed: 3.781115, 53 invocationCounts: { retrieveAndSerialize: Long('1') } 54 } 55 }, 56 metadata: { 57 <hostname>.mongodb.netmongotVersion: '1.42.0', 58 mongotHostName: '<hostname>.mongodb.net', 59 indexName: 'default', 60 cursorOptions: { batchSize: 108, requiresSearchSequenceToken: false }, 61 totalLuceneDocs: 21349 62 }, 63 resourceUsage: { 64 majorFaults: Long('42'), 65 minorFaults: Long('167'), 66 userTimeMs: Long('50'), 67 systemTimeMs: Long('0'), 68 maxReportingThreads: 1, 69 numBatches: 1 70 } 71 }, 72 requiresSearchMetaCursor: false, 73 internalMongotBatchSizeHistory: [ Long('108') ] 74 }, 75 nReturned: Long('25'), 76 executionTimeMillisEstimate: Long('0') 77 }, 78 { 79 '$_internalSearchIdLookup': { 80 subPipeline: [ 81 { '$match': { _id: { '$eq': '_id placeholder' } } } 82 ], 83 totalDocsExamined: Long('25'), 84 totalKeysExamined: Long('25'), 85 numDocsFilteredByIdLookup: Long('0') 86 }, 87 nReturned: Long('25'), 88 executionTimeMillisEstimate: Long('1') 89 }, 90 { 91 '$project': { 92 description: true, 93 highlights: { '$meta': 'searchHighlights' }, 94 _id: false 95 }, 96 nReturned: Long('25'), 97 executionTimeMillisEstimate: Long('1') 98 } 99 ], 100 queryShapeHash: 'D08444272924C1E04A6E99D0CD4BF82FD929893862B3356F79EC18BBD1F0EF0C', 101 serverInfo: { 102 host: '<hostname>.mongodb.net', 103 port: 27017, 104 version: '8.2.0', 105 gitVersion: '13e629eeccd63f00d17568fc4c12b7530fa34b54' 106 }, 107 serverParameters: { 108 internalQueryFacetBufferSizeBytes: 104857600, 109 internalQueryFacetMaxOutputDocSizeBytes: 104857600, 110 internalLookupStageIntermediateDocumentMaxSizeBytes: 104857600, 111 internalDocumentSourceGroupMaxMemoryBytes: 104857600, 112 internalQueryMaxBlockingSortMemoryUsageBytes: 104857600, 113 internalQueryProhibitBlockingMergeOnMongoS: 0, 114 internalQueryMaxAddToSetBytes: 104857600, 115 internalDocumentSourceSetWindowFieldsMaxMemoryBytes: 104857600, 116 internalQueryFrameworkControl: 'trySbeRestricted', 117 internalQueryPlannerIgnoreIndexWithCollationForRegex: 1 118 }, 119 command: { 120 aggregate: 'movies', 121 pipeline: [ 122 { 123 '$search': { 124 text: { path: 'title', query: 'prince' }, 125 highlight: { path: 'title', maxNumPassages: 1, maxCharsToExamine: 40 } 126 } 127 }, 128 { 129 '$project': { 130 description: 1, 131 _id: 0, 132 highlights: { '$meta': 'searchHighlights' } 133 } 134 } 135 ], 136 cursor: {}, 137 '$db': 'sample_mflix' 138 }, 139 ok: 1, 140 '$clusterTime': { 141 clusterTime: Timestamp({ t: 1758302099, i: 1 }), 142 signature: { 143 hash: Binary.createFromBase64('pUGxwCVnDOBIObmhURJQ1a1UwC8=', 0), 144 keyId: Long('7551379485140975621') 145 } 146 }, 147 operationTime: Timestamp({ t: 1758302099, i: 1 }) 148 }
db.movies.explain("allPlansExecution").aggregate([ { "$searchMeta": { "facet": { "operator": { "near": { "path": "released", "origin": ISODate("1921-11-01T00:00:00.000+00:00"), "pivot": 7776000000 } }, "facets": { "genresFacet": { "type": "string", "path": "genres" }, "yearFacet" : { "type" : "number", "path" : "year", "boundaries" : [1910,1920,1930,1940] } } } } } ])
1 { 2 explainVersion: '1', 3 stages: [ 4 { 5 '$searchMeta': { 6 mongotQuery: { 7 facet: { 8 operator: { 9 near: { 10 path: 'released', 11 origin: ISODate('1921-11-01T00:00:00.000Z'), 12 pivot: 7776000000 13 } 14 }, 15 facets: { 16 genresFacet: { type: 'string', path: 'genres' }, 17 yearFacet: { 18 type: 'number', 19 path: 'year', 20 boundaries: [ 1910, 1920, 1930, 1940 ] 21 } 22 } 23 } 24 }, 25 explain: { 26 query: { 27 type: 'LongDistanceFeatureQuery', 28 args: {}, 29 stats: { 30 context: { 31 millisElapsed: 4.141763, 32 invocationCounts: { createWeight: Long('1'), createScorer: Long('6') } 33 }, 34 match: { 35 millisElapsed: 24.986327, 36 invocationCounts: { nextDoc: Long('20881') } 37 }, 38 score: { 39 millisElapsed: 33.324657, 40 invocationCounts: { score: Long('20878') } 41 } 42 } 43 }, 44 collectStats: { 45 allCollectorStats: { 46 millisElapsed: 72.243101, 47 invocationCounts: { 48 collect: Long('20878'), 49 competitiveIterator: Long('3'), 50 setScorer: Long('3') 51 } 52 }, 53 facet: { 54 collectorStats: { 55 millisElapsed: 10.424621, 56 invocationCounts: { collect: Long('20878'), setScorer: Long('3') } 57 }, 58 createCountsStats: { 59 millisElapsed: 60.095261, 60 invocationCounts: { generateFacetCounts: Long('2') } 61 }, 62 stringFacetCardinalities: { genresFacet: { queried: 10, total: 25 } } 63 } 64 }, 65 resultMaterialization: { 66 stats: { 67 millisElapsed: 13.764287, 68 invocationCounts: { retrieveAndSerialize: Long('1') } 69 } 70 }, 71 metadata: { 72 <hostname>.mongodb.netmongotVersion: '1.42.0', 73 mongotHostName: '<hostname>.mongodb.net', 74 indexName: 'default', 75 totalLuceneDocs: 21349 76 }, 77 resourceUsage: { 78 majorFaults: Long('10'), 79 minorFaults: Long('13'), 80 userTimeMs: Long('20'), 81 systemTimeMs: Long('0'), 82 maxReportingThreads: 1, 83 numBatches: 1 84 } 85 }, 86 requiresSearchMetaCursor: true 87 }, 88 nReturned: Long('1'), 89 executionTimeMillisEstimate: Long('336') 90 } 91 ], 92 queryShapeHash: '582DB864C9BCFB96896CF1A3079CF70FAC10A9A1E19E8D66DF20A2BB40424FB5', 93 serverInfo: { 94 host: '<hostname>.mongodb.net', 95 port: 27017, 96 version: '8.2.0', 97 gitVersion: '13e629eeccd63f00d17568fc4c12b7530fa34b54' 98 }, 99 serverParameters: { 100 ... 101 }, 102 command: { 103 aggregate: 'movies', 104 pipeline: [ 105 { 106 '$searchMeta': { 107 facet: { 108 operator: { 109 near: { 110 path: 'released', 111 origin: ISODate('1921-11-01T00:00:00.000Z'), 112 pivot: 7776000000 113 } 114 }, 115 facets: { 116 genresFacet: { type: 'string', path: 'genres' }, 117 yearFacet: { 118 type: 'number', 119 path: 'year', 120 boundaries: [ 1910, 1920, 1930, 1940 ] 121 } 122 } 123 } 124 } 125 } 126 ], 127 cursor: {}, 128 '$db': 'sample_mflix' 129 }, 130 ok: 1, 131 '$clusterTime': { 132 clusterTime: Timestamp({ t: 1758304279, i: 1 }), 133 signature: { 134 hash: Binary.createFromBase64('DI9+ZTogU1QxHCWId6QLcA4R4tQ=', 0), 135 keyId: Long('7551379485140975621') 136 } 137 }, 138 operationTime: Timestamp({ t: 1758304279, i: 1 }) 139 }
db.movies.explain("allPlansExecution").aggregate([ { $search: { "text": { "path": "title", "query": "yark", "fuzzy": { "maxEdits": 1, "maxExpansions": 100, } } } } ])
1 { 2 explainVersion: '1', 3 stages: [ 4 { 5 '$_internalSearchMongotRemote': { 6 mongotQuery: { 7 text: { 8 path: 'title', 9 query: 'yark', 10 fuzzy: { maxEdits: 1, maxExpansions: 100 } 11 } 12 }, 13 explain: { 14 query: { 15 type: 'BooleanQuery', 16 args: { 17 must: [], 18 mustNot: [], 19 should: [ 20 { 21 type: 'BoostQuery', 22 args: { 23 query: { 24 type: 'TermQuery', 25 args: { path: 'title', value: 'mark' }, 26 stats: { 27 context: { millisElapsed: 0 }, 28 match: { millisElapsed: 0 }, 29 score: { millisElapsed: 0 } 30 } 31 }, 32 boost: 0.75 33 }, 34 stats: { 35 context: { 36 millisElapsed: 0.164466, 37 invocationCounts: { 38 createWeight: Long('2'), 39 createScorer: Long('18') 40 } 41 }, 42 match: { 43 millisElapsed: 0.055889, 44 invocationCounts: { nextDoc: Long('22') } 45 }, 46 score: { 47 millisElapsed: 0.01638, 48 invocationCounts: { score: Long('16') } 49 } 50 } 51 }, 52 { 53 type: 'BoostQuery', 54 args: { 55 query: { 56 type: 'TermQuery', 57 args: { path: 'title', value: 'yard' }, 58 stats: { 59 context: { millisElapsed: 0 }, 60 match: { millisElapsed: 0 }, 61 score: { millisElapsed: 0 } 62 } 63 }, 64 boost: 0.75 65 }, 66 stats: { 67 context: { 68 millisElapsed: 0.109841, 69 invocationCounts: { 70 createWeight: Long('2'), 71 createScorer: Long('14') 72 } 73 }, 74 match: { 75 millisElapsed: 0.009747, 76 invocationCounts: { nextDoc: Long('10') } 77 }, 78 score: { 79 millisElapsed: 0.005449, 80 invocationCounts: { score: Long('6') } 81 } 82 } 83 }, 84 { 85 type: 'BoostQuery', 86 args: { 87 query: { 88 type: 'TermQuery', 89 args: { path: 'title', value: 'york' }, 90 stats: { 91 context: { millisElapsed: 0 }, 92 match: { millisElapsed: 0 }, 93 score: { millisElapsed: 0 } 94 } 95 }, 96 boost: 0.75 97 }, 98 stats: { 99 context: { 100 millisElapsed: 0.140144, 101 invocationCounts: { 102 createWeight: Long('2'), 103 createScorer: Long('18') 104 } 105 }, 106 match: { 107 millisElapsed: 0.058885, 108 invocationCounts: { nextDoc: Long('62') } 109 }, 110 score: { 111 millisElapsed: 0.877508, 112 invocationCounts: { score: Long('56') } 113 } 114 } 115 }, 116 { 117 type: 'BoostQuery', 118 args: { 119 query: { 120 type: 'TermQuery', 121 args: { path: 'title', value: 'ark' }, 122 stats: { 123 context: { millisElapsed: 0 }, 124 match: { millisElapsed: 0 }, 125 score: { millisElapsed: 0 } 126 } 127 }, 128 boost: 0.6666666269302368 129 }, 130 stats: { 131 context: { 132 millisElapsed: 0.26056, 133 invocationCounts: { 134 createWeight: Long('2'), 135 createScorer: Long('10') 136 } 137 }, 138 match: { 139 millisElapsed: 1.028141, 140 invocationCounts: { nextDoc: Long('6') } 141 }, 142 score: { 143 millisElapsed: 0.004226, 144 invocationCounts: { score: Long('4') } 145 } 146 } 147 }, 148 { 149 type: 'BoostQuery', 150 args: { 151 query: { 152 type: 'TermQuery', 153 args: { path: 'title', value: 'dark' }, 154 stats: { 155 context: { millisElapsed: 0 }, 156 match: { millisElapsed: 0 }, 157 score: { millisElapsed: 0 } 158 } 159 }, 160 boost: 0.75 161 }, 162 stats: { 163 context: { 164 millisElapsed: 0.3029, 165 invocationCounts: { 166 createWeight: Long('2'), 167 createScorer: Long('18') 168 } 169 }, 170 match: { 171 millisElapsed: 2.294511, 172 invocationCounts: { nextDoc: Long('172') } 173 }, 174 score: { 175 millisElapsed: 1.806661, 176 invocationCounts: { score: Long('166') } 177 } 178 } 179 }, 180 { 181 type: 'BoostQuery', 182 args: { 183 query: { 184 type: 'TermQuery', 185 args: { path: 'title', value: 'park' }, 186 stats: { 187 context: { millisElapsed: 0 }, 188 match: { millisElapsed: 0 }, 189 score: { millisElapsed: 0 } 190 } 191 }, 192 boost: 0.75 193 }, 194 stats: { 195 context: { 196 millisElapsed: 0.154143, 197 invocationCounts: { 198 createWeight: Long('2'), 199 createScorer: Long('18') 200 } 201 }, 202 match: { 203 millisElapsed: 0.052283, 204 invocationCounts: { nextDoc: Long('60') } 205 }, 206 score: { 207 millisElapsed: 0.050278, 208 invocationCounts: { score: Long('54') } 209 } 210 } 211 } 212 ], 213 filter: [], 214 minimumShouldMatch: 0 215 }, 216 stats: { 217 context: { 218 millisElapsed: 2.024454, 219 invocationCounts: { createWeight: Long('2'), createScorer: Long('12') } 220 }, 221 match: { 222 millisElapsed: 4.020593, 223 invocationCounts: { nextDoc: Long('308') } 224 }, 225 score: { 226 millisElapsed: 3.181962, 227 invocationCounts: { score: Long('302') } 228 } 229 } 230 }, 231 collectStats: { 232 allCollectorStats: { 233 millisElapsed: 4.062801, 234 invocationCounts: { 235 collect: Long('302'), 236 competitiveIterator: Long('6'), 237 setScorer: Long('6') 238 } 239 }, 240 facet: { collectorStats: { millisElapsed: 0 } } 241 }, 242 resultMaterialization: { 243 stats: { 244 millisElapsed: 127.205476, 245 invocationCounts: { retrieveAndSerialize: Long('2') } 246 } 247 }, 248 metadata: { 249 <hostname>.mongodb.netmongotVersion: '1.42.0', 250 mongotHostName: '<hostname>.mongodb.net', 251 indexName: 'default', 252 cursorOptions: { batchSize: 108, requiresSearchSequenceToken: false }, 253 totalLuceneDocs: 21349 254 }, 255 resourceUsage: { 256 majorFaults: Long('100'), 257 minorFaults: Long('31'), 258 userTimeMs: Long('20'), 259 systemTimeMs: Long('10'), 260 maxReportingThreads: 1, 261 numBatches: 2 262 } 263 }, 264 requiresSearchMetaCursor: false, 265 internalMongotBatchSizeHistory: [ Long('108'), Long('162') ] 266 }, 267 nReturned: Long('151'), 268 executionTimeMillisEstimate: Long('57') 269 }, 270 { 271 '$_internalSearchIdLookup': { 272 subPipeline: [ 273 { '$match': { _id: { '$eq': '_id placeholder' } } } 274 ], 275 totalDocsExamined: Long('151'), 276 totalKeysExamined: Long('151'), 277 numDocsFilteredByIdLookup: Long('0') 278 }, 279 nReturned: Long('151'), 280 executionTimeMillisEstimate: Long('64') 281 } 282 ], 283 queryShapeHash: '6FD3791F785FA329D4ECD1171E0E5AF6772C18F5F0A7A50FC416D080A93C8CB7', 284 serverInfo: { 285 host: '<hostname>.mongodb.net', 286 port: 27017, 287 version: '8.2.0', 288 gitVersion: '13e629eeccd63f00d17568fc4c12b7530fa34b54' 289 }, 290 serverParameters: { 291 ... 292 }, 293 command: { 294 aggregate: 'movies', 295 pipeline: [ 296 { 297 '$search': { 298 text: { 299 path: 'title', 300 query: 'yark', 301 fuzzy: { maxEdits: 1, maxExpansions: 100 } 302 } 303 } 304 } 305 ], 306 cursor: {}, 307 '$db': 'sample_mflix' 308 }, 309 ok: 1, 310 '$clusterTime': { 311 clusterTime: Timestamp({ t: 1758302299, i: 1 }), 312 signature: { 313 hash: Binary.createFromBase64('pCKOPlBY/K4IObOkqDlOSnbRqw0=', 0), 314 keyId: Long('7551379485140975621') 315 } 316 }, 317 operationTime: Timestamp({ t: 1758302299, i: 1 }) 318 }
queryPlanner
The following example uses different operators to query the title field with the queryPlanner verbosity mode.
db.movies.explain("queryPlanner").aggregate([ { $search: { "text": { "path": "title", "query": "yark", "fuzzy": { "maxEdits": 1, "maxExpansions": 100, } } } } ])
1 { 2 explainVersion: '1', 3 stages: [ 4 { 5 '$_internalSearchMongotRemote': { 6 mongotQuery: { 7 text: { 8 path: 'title', 9 query: 'yark', 10 fuzzy: { maxEdits: 1, maxExpansions: 100 } 11 } 12 }, 13 explain: { 14 query: { 15 type: 'BooleanQuery', 16 args: { 17 must: [], 18 mustNot: [], 19 should: [ 20 { 21 type: 'BoostQuery', 22 args: { 23 query: { 24 type: 'TermQuery', 25 args: { path: 'title', value: 'park' } 26 }, 27 boost: 0.75 28 } 29 }, 30 { 31 type: 'BoostQuery', 32 args: { 33 query: { 34 type: 'TermQuery', 35 args: { path: 'title', value: 'york' } 36 }, 37 boost: 0.75 38 } 39 }, 40 { 41 type: 'BoostQuery', 42 args: { 43 query: { 44 type: 'TermQuery', 45 args: { path: 'title', value: 'dark' } 46 }, 47 boost: 0.75 48 } 49 }, 50 { 51 type: 'BoostQuery', 52 args: { 53 query: { 54 type: 'TermQuery', 55 args: { path: 'title', value: 'mark' } 56 }, 57 boost: 0.75 58 } 59 }, 60 { 61 type: 'BoostQuery', 62 args: { 63 query: { 64 type: 'TermQuery', 65 args: { path: 'title', value: 'yard' } 66 }, 67 boost: 0.75 68 } 69 }, 70 { 71 type: 'BoostQuery', 72 args: { 73 query: { 74 type: 'TermQuery', 75 args: { path: 'title', value: 'ark' } 76 }, 77 boost: 0.6666666269302368 78 } 79 } 80 ], 81 filter: [], 82 minimumShouldMatch: 0 83 } 84 }, 85 metadata: { 86 <hostname>.mongodb.netmongotVersion: '1.42.0', 87 mongotHostName: '<hostname>.mongodb.net', 88 indexName: 'default', 89 totalLuceneDocs: 21349 90 } 91 }, 92 requiresSearchMetaCursor: false 93 } 94 }, 95 { 96 '$_internalSearchIdLookup': { 97 subPipeline: [ 98 { '$match': { _id: { '$eq': '_id placeholder' } } } 99 ] 100 } 101 } 102 ], 103 queryShapeHash: '6FD3791F785FA329D4ECD1171E0E5AF6772C18F5F0A7A50FC416D080A93C8CB7', 104 serverInfo: { 105 host: '<hostname>.mongodb.net', 106 port: 27017, 107 version: '8.2.0', 108 gitVersion: '13e629eeccd63f00d17568fc4c12b7530fa34b54' 109 }, 110 serverParameters: { 111 ... 112 }, 113 command: { 114 aggregate: 'movies', 115 pipeline: [ 116 { 117 '$search': { 118 text: { 119 path: 'title', 120 query: 'yark', 121 fuzzy: { maxEdits: 1, maxExpansions: 100 } 122 } 123 } 124 } 125 ], 126 cursor: {}, 127 '$db': 'sample_mflix' 128 }, 129 ok: 1, 130 '$clusterTime': { 131 clusterTime: Timestamp({ t: 1758305729, i: 1 }), 132 signature: { 133 hash: Binary.createFromBase64('IUnIrXR/VeUrj1cGgyEFlkoQKAM=', 0), 134 keyId: Long('7551379485140975621') 135 } 136 }, 137 operationTime: Timestamp({ t: 1758305729, i: 1 }) 138 }
db.movies.explain("queryPlanner").aggregate([ { $search: { "text": { "path": "title", "query": "prince" }, "highlight": { "path": "title", "maxNumPassages": 1, "maxCharsToExamine": 40 } } }, { $project: { "description": 1, "_id": 0, "highlights": { "$meta": "searchHighlights" } } } ])
1 { 2 explainVersion: '1', 3 stages: [ 4 { 5 '$_internalSearchMongotRemote': { 6 mongotQuery: { 7 text: { path: 'title', query: 'prince' }, 8 highlight: { path: 'title', maxNumPassages: 1, maxCharsToExamine: 40 } 9 }, 10 explain: { 11 query: { 12 type: 'TermQuery', 13 args: { path: 'title', value: 'prince' } 14 }, 15 highlight: { resolvedHighlightPaths: [ '$type:string/title' ] }, 16 metadata: { 17 <hostname>.mongodb.netmongotVersion: '1.42.0', 18 mongotHostName: '<hostname>.mongodb.net', 19 indexName: 'default', 20 totalLuceneDocs: 21349 21 } 22 }, 23 requiresSearchMetaCursor: false 24 } 25 }, 26 { 27 '$_internalSearchIdLookup': { 28 subPipeline: [ 29 { '$match': { _id: { '$eq': '_id placeholder' } } } 30 ] 31 } 32 }, 33 { 34 '$project': { 35 description: true, 36 highlights: { '$meta': 'searchHighlights' }, 37 _id: false 38 } 39 } 40 ], 41 queryShapeHash: 'D08444272924C1E04A6E99D0CD4BF82FD929893862B3356F79EC18BBD1F0EF0C', 42 serverInfo: { 43 host: '<hostname>.mongodb.net', 44 port: 27017, 45 version: '8.2.0', 46 gitVersion: '13e629eeccd63f00d17568fc4c12b7530fa34b54' 47 }, 48 serverParameters: { 49 ... 50 }, 51 command: { 52 aggregate: 'movies', 53 pipeline: [ 54 { 55 '$search': { 56 text: { path: 'title', query: 'prince' }, 57 highlight: { path: 'title', maxNumPassages: 1, maxCharsToExamine: 40 } 58 } 59 }, 60 { 61 '$project': { 62 description: 1, 63 _id: 0, 64 highlights: { '$meta': 'searchHighlights' } 65 } 66 } 67 ], 68 cursor: {}, 69 '$db': 'sample_mflix' 70 }, 71 ok: 1, 72 '$clusterTime': { 73 clusterTime: Timestamp({ t: 1758305809, i: 1 }), 74 signature: { 75 hash: Binary.createFromBase64('R7wN4/xS0eg0XFd23xeo/+hMPBY=', 0), 76 keyId: Long('7551379485140975621') 77 } 78 }, 79 operationTime: Timestamp({ t: 1758305809, i: 1 }) 80 }
db.movies.explain("queryPlanner").aggregate([ { "$searchMeta": { "facet": { "operator": { "near": { "path": "released", "origin": ISODate("1921-11-01T00:00:00.000+00:00"), "pivot": 7776000000 } }, "facets": { "genresFacet": { "type": "string", "path": "genres" }, "yearFacet" : { "type" : "number", "path" : "year", "boundaries" : [1910,1920,1930,1940] } } } } } ])
1 { 2 explainVersion: '1', 3 stages: [ 4 { 5 '$searchMeta': { 6 mongotQuery: { 7 facet: { 8 operator: { 9 near: { 10 path: 'released', 11 origin: ISODate('1921-11-01T00:00:00.000Z'), 12 pivot: 7776000000 13 } 14 }, 15 facets: { 16 genresFacet: { type: 'string', path: 'genres' }, 17 yearFacet: { 18 type: 'number', 19 path: 'year', 20 boundaries: [ 1910, 1920, 1930, 1940 ] 21 } 22 } 23 } 24 }, 25 explain: { 26 query: { type: 'LongDistanceFeatureQuery', args: {} }, 27 collectStats: { 28 facet: { 29 stringFacetCardinalities: { genresFacet: { queried: 10, total: 25 } } 30 } 31 }, 32 metadata: { 33 <hostname>.mongodb.netmongotVersion: '1.42.0', 34 mongotHostName: '<hostname>.mongodb.net', 35 indexName: 'default', 36 totalLuceneDocs: 21349 37 } 38 }, 39 requiresSearchMetaCursor: true 40 } 41 } 42 ], 43 queryShapeHash: '582DB864C9BCFB96896CF1A3079CF70FAC10A9A1E19E8D66DF20A2BB40424FB5', 44 serverInfo: { 45 host: '<hostname>.mongodb.net', 46 port: 27017, 47 version: '8.2.0', 48 gitVersion: '13e629eeccd63f00d17568fc4c12b7530fa34b54' 49 }, 50 serverParameters: { 51 ... 52 }, 53 command: { 54 aggregate: 'movies', 55 pipeline: [ 56 { 57 '$searchMeta': { 58 facet: { 59 operator: { 60 near: { 61 path: 'released', 62 origin: ISODate('1921-11-01T00:00:00.000Z'), 63 pivot: 7776000000 64 } 65 }, 66 facets: { 67 genresFacet: { type: 'string', path: 'genres' }, 68 yearFacet: { 69 type: 'number', 70 path: 'year', 71 boundaries: [ 1910, 1920, 1930, 1940 ] 72 } 73 } 74 } 75 } 76 } 77 ], 78 cursor: {}, 79 '$db': 'sample_mflix' 80 }, 81 ok: 1, 82 '$clusterTime': { 83 clusterTime: Timestamp({ t: 1758305859, i: 1 }), 84 signature: { 85 hash: Binary.createFromBase64('8Zm16MEkzHnPpP9uLJK1YlT7a3o=', 0), 86 keyId: Long('7551379485140975621') 87 } 88 }, 89 operationTime: Timestamp({ t: 1758305859, i: 1 }) 90 }
For queries that specify a $limit stage in the pipeline, the explain results include the mongotDocsRequested metric, which shows the number of documents that mongod requested from mongot.
Example
{ "mongotQuery": {}, "explain": {}, "limit": <int>, "sortSpec": {}, "mongotDocsRequested": <int>, }
executionStats
The following example uses the autocomplete to query the title field with the executionStats verbosity mode.
1 db.movies.explain("executionStats").aggregate([ 2 { 3 "$search": { 4 "autocomplete": { 5 "path": "title", 6 "query": "pre", 7 "fuzzy": { 8 "maxEdits": 1, 9 "prefixLength": 1, 10 "maxExpansions": 256 11 } 12 } 13 } 14 } 15 ])
1 { 2 explainVersion: '1', 3 stages: [ 4 { 5 '$_internalSearchMongotRemote': { 6 mongotQuery: { 7 autocomplete: { 8 path: 'title', 9 query: 'pre', 10 fuzzy: { maxEdits: 1, prefixLength: 1, maxExpansions: 256 } 11 } 12 }, 13 explain: { 14 query: { 15 type: 'BooleanQuery', 16 args: { 17 must: [ 18 { 19 type: 'MultiTermQueryConstantScoreBlendedWrapper', 20 args: { 21 queries: [ 22 { 23 type: 'DefaultQuery', 24 args: { queryType: 'AutomatonQuery' }, 25 stats: { 26 context: { millisElapsed: 0 }, 27 match: { millisElapsed: 0 }, 28 score: { millisElapsed: 0 } 29 } 30 } 31 ] 32 }, 33 stats: { 34 context: { 35 millisElapsed: 12.517877, 36 invocationCounts: { 37 createWeight: Long('4'), 38 createScorer: Long('48') 39 } 40 }, 41 match: { 42 millisElapsed: 0.970794, 43 invocationCounts: { nextDoc: Long('2436') } 44 }, 45 score: { 46 millisElapsed: 0.638731, 47 invocationCounts: { score: Long('2420') } 48 } 49 } 50 } 51 ], 52 mustNot: [], 53 should: [ 54 { 55 type: 'TermQuery', 56 args: { path: 'title', value: 'pre' }, 57 stats: { 58 context: { 59 millisElapsed: 1.481341, 60 invocationCounts: { 61 createWeight: Long('4'), 62 createScorer: Long('16') 63 } 64 }, 65 match: { millisElapsed: 0 }, 66 score: { millisElapsed: 0 } 67 } 68 } 69 ], 70 filter: [], 71 minimumShouldMatch: 0 72 }, 73 stats: { 74 context: { 75 millisElapsed: 15.118651, 76 invocationCounts: { createWeight: Long('4'), createScorer: Long('32') } 77 }, 78 match: { 79 millisElapsed: 1.923822, 80 invocationCounts: { nextDoc: Long('2436') } 81 }, 82 score: { 83 millisElapsed: 1.954216, 84 invocationCounts: { score: Long('2420') } 85 } 86 } 87 }, 88 collectStats: { 89 allCollectorStats: { 90 millisElapsed: 4.189904, 91 invocationCounts: { 92 collect: Long('2420'), 93 competitiveIterator: Long('16'), 94 setScorer: Long('16') 95 } 96 }, 97 facet: { collectorStats: { millisElapsed: 0 } } 98 }, 99 resultMaterialization: { 100 stats: { 101 millisElapsed: 21.876621, 102 invocationCounts: { retrieveAndSerialize: Long('4') } 103 } 104 }, 105 metadata: { 106 <hostname>.mongodb.netmongotVersion: '1.42.0', 107 mongotHostName: '<hostname>.mongodb.net', 108 indexName: 'default', 109 cursorOptions: { batchSize: 108, requiresSearchSequenceToken: false }, 110 totalLuceneDocs: 21349 111 }, 112 resourceUsage: { 113 majorFaults: Long('2'), 114 minorFaults: Long('242'), 115 userTimeMs: Long('40'), 116 systemTimeMs: Long('0'), 117 maxReportingThreads: 1, 118 numBatches: 4 119 } 120 }, 121 requiresSearchMetaCursor: false, 122 internalMongotBatchSizeHistory: [ Long('108'), Long('162'), Long('243'), Long('365') ] 123 }, 124 nReturned: Long('605'), 125 executionTimeMillisEstimate: Long('44') 126 }, 127 { 128 '$_internalSearchIdLookup': { 129 subPipeline: [ 130 { '$match': { _id: { '$eq': '_id placeholder' } } } 131 ], 132 totalDocsExamined: Long('605'), 133 totalKeysExamined: Long('605'), 134 numDocsFilteredByIdLookup: Long('0') 135 }, 136 nReturned: Long('605'), 137 executionTimeMillisEstimate: Long('91') 138 } 139 ], 140 queryShapeHash: '6FD3791F785FA329D4ECD1171E0E5AF6772C18F5F0A7A50FC416D080A93C8CB7', 141 serverInfo: { 142 host: '<hostname>.mongodb.net', 143 port: 27017, 144 version: '8.2.0', 145 gitVersion: '13e629eeccd63f00d17568fc4c12b7530fa34b54' 146 }, 147 serverParameters: { 148 ... 149 }, 150 command: { 151 aggregate: 'movies', 152 pipeline: [ 153 { 154 '$search': { 155 autocomplete: { 156 path: 'title', 157 query: 'pre', 158 fuzzy: { maxEdits: 1, prefixLength: 1, maxExpansions: 256 } 159 } 160 } 161 } 162 ], 163 cursor: {}, 164 '$db': 'sample_mflix' 165 }, 166 ok: 1, 167 '$clusterTime': { 168 clusterTime: Timestamp({ t: 1758306209, i: 1 }), 169 signature: { 170 hash: Binary.createFromBase64('MIipFR5NAfl728L6h4ueQeZBLGM=', 0), 171 keyId: Long('7551379485140975621') 172 } 173 }, 174 operationTime: Timestamp({ t: 1758306209, i: 1 }) 175 }
To learn more about the explain response elements, see Explain Results.