Best Practices for Deploying LLM Systems

Explore top LinkedIn content from expert professionals.

  • View profile for Brij kishore Pandey
    Brij kishore Pandey Brij kishore Pandey is an Influencer

    AI Architect | Strategist | Generative AI | Agentic AI

    680,514 followers

    When working with multiple LLM providers, managing prompts, and handling complex data flows — structure isn't a luxury, it's a necessity. A well-organized architecture enables: → Collaboration between ML engineers and developers → Rapid experimentation with reproducibility → Consistent error handling, rate limiting, and logging → Clear separation of configuration (YAML) and logic (code) 𝗞𝗲𝘆 𝗖𝗼𝗺𝗽𝗼𝗻𝗲𝗻𝘁𝘀 𝗧𝗵𝗮𝘁 𝗗𝗿𝗶𝘃𝗲 𝗦𝘂𝗰𝗰𝗲𝘀𝘀 It’s not just about folder layout — it’s how components interact and scale together: → Centralized configuration using YAML files → A dedicated prompt engineering module with templates and few-shot examples → Properly sandboxed model clients with standardized interfaces → Utilities for caching, observability, and structured logging → Modular handlers for managing API calls and workflows This setup can save teams countless hours in debugging, onboarding, and scaling real-world GenAI systems — whether you're building RAG pipelines, fine-tuning models, or developing agent-based architectures. → What’s your go-to project structure when working with LLMs or Generative AI systems? Let’s share ideas and learn from each other.

  • View profile for Aishwarya Srinivasan
    Aishwarya Srinivasan Aishwarya Srinivasan is an Influencer
    584,894 followers

    If you’re building anything with LLMs, your system architecture matters more than your prompts. Most people stop at “call the model, get the output.” But LLM-native systems need workflows, blueprints that define how multiple LLM calls interact, how routing, evaluation, memory, tools, or chaining come into play. Here’s a breakdown of 6 core LLM workflows I see in production: 🧠 LLM Augmentation Classic RAG + tools setup. The model augments its own capabilities using: → Retrieval (e.g., from vector DBs) → Tool use (e.g., calculators, APIs) → Memory (short-term or long-term context) 🔗 Prompt Chaining Workflow Sequential reasoning across steps. Each output is validated (pass/fail) → passed to the next model. Great for multi-stage tasks like reasoning, summarizing, translating, and evaluating. 🛣 LLM Routing Workflow Input routed to different models (or prompts) based on the type of task. Example: classification → Q&A → summarization all handled by different call paths. 📊 LLM Parallelization Workflow (Aggregator) Run multiple models/tasks in parallel → aggregate the outputs. Useful for ensembling or sourcing multiple perspectives. 🎼 LLM Parallelization Workflow (Synthesizer) A more orchestrated version with a control layer. Think: multi-agent systems with a conductor + synthesizer to harmonize responses. 🧪 Evaluator–Optimizer Workflow The most underrated architecture. One LLM generates. Another evaluates (pass/fail + feedback). This loop continues until quality thresholds are met. If you’re an AI engineer, don’t just build for single-shot inference. Design workflows that scale, self-correct, and adapt. 📌 Save this visual for your next project architecture review. 〰️〰️〰️ Follow me (Aishwarya Srinivasan) for more AI insight and subscribe to my Substack to find more in-depth blogs and weekly updates in AI: https://lnkd.in/dpBNr6Jg

  • View profile for Chip Huyen
    Chip Huyen Chip Huyen is an Influencer

    Building something new | AI x storytelling x education

    291,046 followers

    LinkedIn has published one of the best reports I’ve read on deploying LLM applications: what worked and what didn’t. 1. Structured outputs They chose YAML over JSON as the output format because YAML uses less output tokens. Initially, only 90% of the outputs are correctly formatted YAML. They used re-prompting (asking the model to fix its YAML responses), which increased the number of API calls significantly. They then analyzed the common formatting errors, added those hints to the original prompt, and wrote an error fixing script. This reduced their errors to 0.01%. 2. Sacrificing throughput for latency Originally, they focused on TTFT (Time To First Token), but realized that TBT (Time Between Token) hurt them a lot more, especially with Chain-of-Thought queries where users don’t see the intermediate outputs. They found that TTFT and TBT inversely correlate with TPS (Tokens per Second). To achieve good TTFT and TBT, they had to sacrifice TPS. 3. Automatic evaluation is hard One core challenge of evaluation is coming up with a guideline on what a good response is. For example, for skill fit assessment, the response: “You’re not a good fit for this job” can be correct, but not helpful. Originally, evaluation was ad-hoc. Everyone could chime in. That didn’t work. They then have linguists build tooling and processes to standardize annotation, evaluating up to 500 daily conversations and these manual annotations guide their iteration. Their next goal is to get automatic evaluation, but it’s not easy. 4. Initial success with LLMs can be misleading It took them 1 month to achieve 80% of the experience they wanted, and additional 4 months to surpass 95%. The initial success made them underestimate how challenging it is to improve the product, especially dealing with hallucinations. They found it discouraging how slow it was to achieve each subsequent 1% gain. #aiengineering #llms #aiapplication

Explore categories