How to Use Autonomous AI Systems With Integrated Tools

Explore top LinkedIn content from expert professionals.

  • View profile for Aishwarya Srinivasan
    Aishwarya Srinivasan Aishwarya Srinivasan is an Influencer
    584,953 followers

    If you’re getting started with AI agents, this is for you 👇 I’ve seen so many builders jump straight into wiring up LangChain or CrewAI without ever understanding what actually makes an LLM act like an agent, and not just a glorified autocomplete engine. I put together a 10-phase roadmap to help you go from foundational concepts → all the way to building, deploying, and scaling multi-agent systems in production. Phase 1: Understand what “agentic AI” actually means → What makes an agent different from a chatbot → Why long-context alone isn’t enough → How tools, memory, and environment drive reasoning Phase 2: Learn the core components → LLM = brain → Memory = context (short + long term) → Tools = actuators → Environment = where the agent runs Phase 3: Prompting for agents → System vs user prompts → Role-based task prompting → Prompt chaining with state tracking → Format constraints and expected outputs Phase 4: Build your first basic agent → Start with a single-task agent → Use UI (Claude or GPT) before code → Iterate prompt → observe behavior → refine Phase 5: Add memory → Use buffers for short-term recall → Integrate vector DBs for long-term → Enable retrieval via user queries → Keep session memory dynamically updated Phase 6: Add tools and external APIs → Function calling = where things get real → Connect search, calendar, custom APIs → Handle agent I/O with guardrails → Test tool behaviors in isolation Phase 7: Build full single-agent workflows → Prompt → Memory → Tool → Response → Add error handling + fallbacks → Use LangGraph or n8n for orchestration → Log actions for replay/debugging Phase 8: Multi-agent coordination → Assign roles (planner, executor, critic) → Share context and working memory → Use A2A/TAP for agent-to-agent messaging → Test decision workflows in teams Phase 9: Deploy and monitor → Host on Replit, Vercel, Render → Monitor tokens, latency, error rates → Add API rate limits + safety rules → Setup logging, alerts, dashboards Phase 10: Join the builder ecosystem → Use Model Context Protocol (MCP) → Contribute to LangChain, CrewAI, AutoGen → Test on open evals (EvalProtocol, SWE-bench, etc.) → Share workflows, follow updates, build in public This is the same path I recommend to anyone transitioning from prompting → to building production-grade agents. Save it. Share it. And let me know what phase you’re in, or where you’re stuck. 〰️〰️〰️ Follow me (Aishwarya Srinivasan) for more AI insight and subscribe to my Substack to find more in-depth blogs and weekly updates in AI: https://lnkd.in/dpBNr6Jg

  • View profile for Piyush Ranjan

    25k+ Followers | AVP| Forbes Technology Council| | Thought Leader | Artificial Intelligence | Cloud Transformation | AWS| Cloud Native| Banking Domain

    25,206 followers

    AI Agent System Blueprint: A Modular Guide to Scalable Intelligence We’ve entered a new era where AI agents aren’t just assistants—they’re autonomous collaborators that reason, access tools, share context, and talk to each other. This powerful blueprint lays out the foundational building blocks for designing enterprise-grade AI agent systems that go beyond basic automation: 🔹 1. Input/Output Layer Your agents are no longer limited to text. With multimodal support, users can interact using documents, images, video, and audio. A chat-first UI ensures accessibility across use cases and platforms. 🔹 2. Orchestration Layer This is the core scaffolding. Use development frameworks, SDKs, tracing tools, guardrails, and evaluation pipelines to create safe, responsive, and modular agents. Orchestration is what transforms a basic chatbot into a powerful autonomous system. 🔹 3. Data & Tools Layer Agents need context to be truly helpful. By plugging into enterprise databases (vector + semantic) and third-party APIs via an MCP server, you enrich agents with relevant, real-time information. Think Stripe, Slack, Brave… integrated at speed. 🔹 4. Reasoning Layer Where logic meets autonomy. The reasoning engine separates agents from monolithic bots by enabling decision-making and smart tool usage. Choose between LRMs (e.g. o3), LLMs (e.g. Gemini Flash, Sonnet), or SLMs (e.g. Gemma 3) depending on your application’s depth and latency needs. 🔹 5. Agent Interoperability Real scalability happens when your agents talk to each other. Using the A2A protocol, enable multi-agent collaboration—Sales Agents coordinating with Documentation Agents, Research Agents syncing with Deployment Agents, and more. Single-agent thinking is outdated. 🔁 It’s no longer about building a bot. It’s about engineering a distributed, intelligent agent ecosystem. 📌 Save this blueprint. Share it with your product, data, or AI team. Because building smart agents isn’t a trend—it’s a strategic advantage. 🔍 Are your AI systems still monolithic, or are they evolving into agentic networks?

  • View profile for Brij kishore Pandey
    Brij kishore Pandey Brij kishore Pandey is an Influencer

    AI Architect | Strategist | Generative AI | Agentic AI

    680,537 followers

    𝗟𝗟𝗠 -> 𝗥𝗔𝗚 -> 𝗔𝗜 𝗔𝗴𝗲𝗻𝘁 -> 𝗔𝗴𝗲𝗻𝘁𝗶𝗰 𝗔𝗜 The visual guide explains how these four layers relate—not as competing technologies, but as an evolving intelligence architecture. Here’s a deeper look: 1. 𝗟𝗟𝗠 (𝗟𝗮𝗿𝗴𝗲 𝗟𝗮𝗻𝗴𝘂𝗮𝗴𝗲 𝗠𝗼𝗱𝗲𝗹) This is the foundation. Models like GPT, Claude, and Gemini are trained on vast corpora of text to perform a wide array of tasks: – Text generation – Instruction following – Chain-of-thought reasoning – Few-shot/zero-shot learning – Embedding and token generation However, LLMs are inherently limited to the knowledge encoded during training and struggle with grounding, real-time updates, or long-term memory. 2. 𝗥𝗔𝗚 (𝗥𝗲𝘁𝗿𝗶𝗲𝘃𝗮𝗹-𝗔𝘂𝗴𝗺𝗲𝗻𝘁𝗲𝗱 𝗚𝗲𝗻𝗲𝗿𝗮𝘁𝗶𝗼𝗻) RAG bridges the gap between static model knowledge and dynamic external information. By integrating techniques such as: – Vector search – Embedding-based similarity scoring – Document chunking – Hybrid retrieval (dense + sparse) – Source attribution – Context injection …RAG enhances the quality and factuality of responses. It enables models to “recall” information they were never trained on, and grounds answers in external sources—critical for enterprise-grade applications. 3. 𝗔𝗜 𝗔𝗴𝗲𝗻𝘁 RAG is still a passive architecture—it retrieves and generates. AI Agents go a step further: they act. Agents perform tasks, execute code, call APIs, manage state, and iterate via feedback loops. They introduce key capabilities such as: – Planning and task decomposition – Execution pipelines – Long- and short-term memory integration – File access and API interaction – Use of frameworks like ReAct, LangChain Agents, AutoGen, and CrewAI This is where LLMs become active participants in workflows rather than just passive responders. 4. 𝗔𝗴𝗲𝗻𝘁𝗶𝗰 𝗔𝗜 This is the most advanced layer—where we go beyond a single autonomous agent to multi-agent systems with role-specific behavior, memory sharing, and inter-agent communication. Core concepts include: – Multi-agent collaboration and task delegation – Modular role assignment and hierarchy – Goal-directed planning and lifecycle management – Protocols like MCP (Anthropic’s Model Context Protocol) and A2A (Google’s Agent-to-Agent) – Long-term memory synchronization and feedback-based evolution Agentic AI is what enables truly autonomous, adaptive, and collaborative intelligence across distributed systems. Whether you’re building enterprise copilots, AI-powered ETL systems, or autonomous task orchestration tools, knowing what each layer offers—and where it falls short—will determine whether your AI system scales or breaks. If you found this helpful, share it with your team or network. If there’s something important you think I missed, feel free to comment or message me—I’d be happy to include it in the next iteration.

  • View profile for Manthan Patel

    I teach AI Agents and Lead Gen | Lead Gen Man(than) | 100K+ students

    143,006 followers

    Everyone's building AI agents, but few understand the Agentic frameworks that power them. These two distinct frameworks are the most used frameworks in 2025, and they aren't competitors but complementary approaches to agent development: 𝗻𝟴𝗻 (𝗩𝗶𝘀𝘂𝗮𝗹 𝗪𝗼𝗿𝗸𝗳𝗹𝗼𝘄 𝗔𝘂𝘁𝗼𝗺𝗮𝘁𝗶𝗼𝗻) - Creates visual connections between AI agents and business tools - Flow: Trigger → AI Agent → Tools/APIs → Action - Solves integration complexity and enables rapid deployment - Think of it as the visual orchestrator connecting AI to your entire tech stack 𝗟𝗮𝗻𝗴𝗚𝗿𝗮𝗽𝗵 (𝗚𝗿𝗮𝗽𝗵-𝗯𝗮𝘀𝗲𝗱 𝗔𝗴𝗲𝗻𝘁 𝗢𝗿𝗰𝗵𝗲𝘀𝘁𝗿𝗮𝘁𝗶𝗼𝗻) by LangChain - Enables stateful, cyclical agent workflows with precise control - Flow: State → Agents → Conditional Logic → State (cycles) - Solves complex reasoning and multi-step agent coordination - Think of it as the brain that manages sophisticated agent decision-making Beyond technicality, each framework has its core strengths. 𝗪𝗵𝗲𝗻 𝘁𝗼 𝘂𝘀𝗲 𝗻𝟴𝗻: - Integrating AI agents with existing business tools - Building customer support automation - Creating no-code AI workflows for teams - Needing quick deployment with 700+ integrations 𝗪𝗵𝗲𝗻 𝘁𝗼 𝘂𝘀𝗲 𝗟𝗮𝗻𝗴𝗚𝗿𝗮𝗽𝗵: - Building complex multi-agent reasoning systems - Creating enterprise-grade AI applications - Developing agents with cyclical workflows - Needing fine-grained state management Both frameworks are gaining significant traction: 𝗻𝟴𝗻 𝗘𝗰𝗼𝘀𝘆𝘀𝘁𝗲𝗺: - Visual workflow builder for non-developers - Self-hostable open-source option - Strong business automation community 𝗟𝗮𝗻𝗴𝗚𝗿𝗮𝗽𝗵 𝗘𝗰𝗼𝘀𝘆𝘀𝘁𝗲𝗺: - Full LangChain ecosystem integration - LangSmith observability and debugging - Advanced state persistence capabilities Top AI solutions integrate both n8n and LangGraph to maximize their potential. - Use n8n for visual orchestration and business tool integration - Use LangGraph for complex agent logic and state management - Think in layers: business automation AND sophisticated reasoning Over to you: What AI agent use case would you build - one that needs visual simplicity (n8n) or complex orchestration (LangGraph)?

Explore categories