In PySpark, to find the sum of a particular column in a DataFrame, you can use the agg() function along with the sum() function available in the pyspark.sql.functions module.
Here's a step-by-step guide:
Setup PySpark:
Make sure you've set up PySpark properly in your environment.
Example:
Let's assume you have a DataFrame df with a column named value, and you want to find the sum of this column.
from pyspark.sql import SparkSession from pyspark.sql.functions import sum # Create a Spark session spark = SparkSession.builder.appName("SumColumn").getOrCreate() # Sample DataFrame data = [("A", 10), ("B", 20), ("A", 15), ("C", 30)] columns = ["name", "value"] df = spark.createDataFrame(data, columns) # Display the original DataFrame df.show() # Find the sum of the 'value' column total = df.agg(sum("value").alias("Total_Sum")).collect()[0]["Total_Sum"] print(f"Total Sum of 'value' column: {total}") # Stop the Spark session spark.stop() In the above example:
df.agg() to aggregate the sum of the value column.collect().The output will show the original DataFrame and then print the total sum of the value column.
page-factory .net-4.0 service blockchain raku slidetoggle manifest discord.js android-alarms fileapi