To sort a Pandas DataFrame per group and keep a desired order within each group, you can use the groupby function along with apply to sort each group individually. Here's how you can achieve this:
Let's say you have a Pandas DataFrame with columns group and value, and you want to sort the rows within each group based on a predefined order of values.
Assume you have the following DataFrame:
import pandas as pd data = { 'group': ['A', 'A', 'B', 'B', 'B', 'A', 'B', 'A', 'A'], 'value': [3, 1, 7, 5, 8, 2, 4, 6, 9] } df = pd.DataFrame(data) print(df) Output:
group value 0 A 3 1 A 1 2 B 7 3 B 5 4 B 8 5 A 2 6 B 4 7 A 6 8 A 9
To sort each group in the DataFrame according to a desired order of value, you can follow these steps:
Define Desired Order: Define the desired order of value for sorting within each group.
Sort Using groupby and apply:
groupby('group') to group the DataFrame by the group column.apply to sort each group according to the desired order.Here's how you can implement it:
# Define desired order of 'value' within each group desired_order = [9, 6, 3, 2, 1] # Define a sorting function def sort_group(group): return group.sort_values(by='value', key=lambda x: x.map({v: i for i, v in enumerate(desired_order)})) # Apply the sorting function to each group sorted_df = df.groupby('group', group_keys=False).apply(sort_group) print(sorted_df) Output:
group value 8 A 9 7 A 6 0 A 3 5 A 2 1 A 1 2 B 7 3 B 5 6 B 4 4 B 8
Desired Order: desired_order is a list containing the desired order of value within each group. In this example, it's [9, 6, 3, 2, 1].
Sorting Function: sort_group is a custom function that sorts each group (group) based on the desired order. It uses sort_values with a custom key function that maps each value to its index in desired_order.
groupby and apply: df.groupby('group', group_keys=False).apply(sort_group) applies the sort_group function to each group of the DataFrame, sorting rows within each group according to the defined order.
Handling Missing Values: If there are values in value that are not in desired_order, they will be placed at the end of each group after sorting.
Alternative Approaches: Depending on the complexity of your sorting requirements, you may need to adjust the sorting function (sort_group) or use different techniques such as merging pre-sorted DataFrames.
By following these steps, you can effectively sort a Pandas DataFrame per group while maintaining a desired order of values within each group according to your specific requirements. Adjust the desired_order list and sorting function as needed for your dataset.
"Pandas sort dataframe per group and maintain order"
import pandas as pd # Example DataFrame df = pd.DataFrame({ 'Group': ['A', 'A', 'B', 'B', 'A', 'B'], 'Value': [3, 1, 5, 2, 4, 6] }) # Define desired order within each group desired_order = {'A': [1, 3, 4], 'B': [2, 5, 6]} # Sort DataFrame per group based on desired order df['Order'] = df.apply(lambda x: desired_order[x['Group']].index(x['Value']), axis=1) df_sorted = df.sort_values(by=['Group', 'Order']).drop('Order', axis=1) print(df_sorted) "Python pandas sort dataframe groupby and keep specified order"
import pandas as pd # Example DataFrame df = pd.DataFrame({ 'Group': ['A', 'A', 'B', 'B', 'A', 'B'], 'Value': [3, 1, 5, 2, 4, 6] }) # Define desired order within each group desired_order = {'A': [1, 3, 4], 'B': [2, 5, 6]} # Function to sort within each group def sort_within_group(group): group['Order'] = group['Value'].apply(lambda x: desired_order[group['Group'].iloc[0]].index(x)) return group.sort_values(by='Order').drop('Order', axis=1) df_sorted = df.groupby('Group').apply(sort_within_group).reset_index(drop=True) print(df_sorted) "Sort pandas dataframe by group and custom order"
import pandas as pd # Example DataFrame df = pd.DataFrame({ 'Group': ['A', 'A', 'B', 'B', 'A', 'B'], 'Value': [3, 1, 5, 2, 4, 6] }) # Define desired order within each group desired_order = {'A': [1, 3, 4], 'B': [2, 5, 6]} # Sort DataFrame per group based on desired order df['Order'] = df.apply(lambda x: desired_order[x['Group']].index(x['Value']), axis=1) df_sorted = df.sort_values(by=['Group', 'Order']).drop('Order', axis=1) print(df_sorted) "Python pandas sort dataframe by group and custom order within each group"
import pandas as pd # Example DataFrame df = pd.DataFrame({ 'Group': ['A', 'A', 'B', 'B', 'A', 'B'], 'Value': [3, 1, 5, 2, 4, 6] }) # Define desired order within each group desired_order = {'A': [1, 3, 4], 'B': [2, 5, 6]} # Sort DataFrame per group based on desired order df['Order'] = df.apply(lambda x: desired_order[x['Group']].index(x['Value']), axis=1) df_sorted = df.sort_values(by=['Group', 'Order']).drop('Order', axis=1) print(df_sorted) "Pandas groupby sort within group and keep specified order"
groupby to sort a DataFrame within each group while preserving a specific order defined for each group.import pandas as pd # Example DataFrame df = pd.DataFrame({ 'Group': ['A', 'A', 'B', 'B', 'A', 'B'], 'Value': [3, 1, 5, 2, 4, 6] }) # Define desired order within each group desired_order = {'A': [1, 3, 4], 'B': [2, 5, 6]} # Function to sort within each group def sort_within_group(group): group['Order'] = group['Value'].apply(lambda x: desired_order[group['Group'].iloc[0]].index(x)) return group.sort_values(by='Order').drop('Order', axis=1) df_sorted = df.groupby('Group').apply(sort_within_group).reset_index(drop=True) print(df_sorted) "Python pandas sort dataframe by group and keep custom order"
import pandas as pd # Example DataFrame df = pd.DataFrame({ 'Group': ['A', 'A', 'B', 'B', 'A', 'B'], 'Value': [3, 1, 5, 2, 4, 6] }) # Define desired order within each group desired_order = {'A': [1, 3, 4], 'B': [2, 5, 6]} # Sort DataFrame per group based on desired order df['Order'] = df.apply(lambda x: desired_order[x['Group']].index(x['Value']), axis=1) df_sorted = df.sort_values(by=['Group', 'Order']).drop('Order', axis=1) print(df_sorted) "Pandas sort dataframe group by column and maintain specific order"
import pandas as pd # Example DataFrame df = pd.DataFrame({ 'Group': ['A', 'A', 'B', 'B', 'A', 'B'], 'Value': [3, 1, 5, 2, 4, 6] }) # Define desired order within each group desired_order = {'A': [1, 3, 4], 'B': [2, 5, 6]} # Sort DataFrame per group based on desired order df['Order'] = df.apply(lambda x: desired_order[x['Group']].index(x['Value']), axis=1) df_sorted = df.sort_values(by=['Group', 'Order']).drop('Order', axis=1) print(df_sorted) "Python pandas sort dataframe by group and maintain specific order within groups"
import pandas as pd # Example DataFrame df = pd.DataFrame({ 'Group': ['A', 'A', 'B', 'B', 'A', 'B'], 'Value': [3, 1, 5, 2, 4, 6] }) # Define desired order within each group desired_order = {'A': [1, 3, 4], 'B': [2, 5, 6]} # Sort DataFrame per group based on desired order df['Order'] = df.apply(lambda x: desired_order[x['Group']].index(x['Value']), axis=1) df_sorted = df.sort_values(by=['Group', 'Order']).drop('Order', axis=1) print(df_sorted) mapping credit-card mser traversal cordova background-drawable openssh cancellation-token venn-diagram search