python - Pandas - group by one column, sort by another, get value from the third column

Python - Pandas - group by one column, sort by another, get value from the third column

To achieve the task of grouping by one column, sorting by another column, and then extracting a value from a third column in a Pandas DataFrame, you can use a combination of the groupby, apply, and sort_values methods. Here's a step-by-step example to illustrate this process:

  1. Import necessary modules:

    import pandas as pd 
  2. Create a sample DataFrame:

    data = { 'group': ['A', 'A', 'B', 'B', 'B', 'C', 'C'], 'sort_col': [10, 5, 8, 2, 4, 7, 1], 'value_col': ['foo', 'bar', 'baz', 'qux', 'quux', 'corge', 'grault'] } df = pd.DataFrame(data) 
  3. Group by one column, sort by another, and get the value from the third column:

    # Group by 'group' column, sort each group by 'sort_col', and get the 'value_col' of the first entry result = df.sort_values('sort_col').groupby('group').first().reset_index() # Select only the 'group' and 'value_col' columns result = result[['group', 'value_col']] print(result) 

Full Example:

import pandas as pd # Sample data data = { 'group': ['A', 'A', 'B', 'B', 'B', 'C', 'C'], 'sort_col': [10, 5, 8, 2, 4, 7, 1], 'value_col': ['foo', 'bar', 'baz', 'qux', 'quux', 'corge', 'grault'] } df = pd.DataFrame(data) # Display the original DataFrame print("Original DataFrame:") print(df) # Group by 'group' column, sort each group by 'sort_col', and get the 'value_col' of the first entry result = df.sort_values('sort_col').groupby('group').first().reset_index() # Select only the 'group' and 'value_col' columns result = result[['group', 'value_col']] # Display the result print("\nResult DataFrame:") print(result) 

Explanation:

  1. Create DataFrame: A sample DataFrame is created with columns group, sort_col, and value_col.
  2. Sort and Group:
    • The DataFrame is first sorted by the sort_col using sort_values('sort_col').
    • Then, it is grouped by the group column using groupby('group').
    • For each group, the first() method is used to get the first entry, which, after sorting, will be the entry with the smallest sort_col value.
  3. Select Relevant Columns: Only the group and value_col columns are selected from the resulting DataFrame.
  4. Display Result: The resulting DataFrame is printed.

Output:

Original DataFrame: group sort_col value_col 0 A 10 foo 1 A 5 bar 2 B 8 baz 3 B 2 qux 4 B 4 quux 5 C 7 corge 6 C 1 grault Result DataFrame: group value_col 0 A bar 1 B qux 2 C grault 

In this example, the resulting DataFrame shows the first value from the value_col for each group after sorting by sort_col within each group.

Examples

  1. "Python group by multiple columns sort by another column extract value from third column"

    • This query suggests the need to group data by multiple columns, sort by another column, and then extract values from a third column in Python.
    import pandas as pd # Sample DataFrame data = {'A': ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'], 'B': ['one', 'one', 'two', 'two', 'one', 'one'], 'C': [3, 2, 5, 8, 9, 10]} df = pd.DataFrame(data) # Grouping by columns A and B, sorting by column C, and extracting values from column C result = df.groupby(['A', 'B']).apply(lambda x: x.sort_values('C').iloc[-1]['C']) print(result) 
  2. "Python pandas group by one column, sort by another, get value from third column example"

    • This query aims for an example demonstrating how to perform grouping by one column, sorting by another, and extracting values from a third column using Pandas.
    import pandas as pd # Sample DataFrame data = {'Category': ['A', 'A', 'B', 'B', 'C', 'C'], 'Value1': [10, 20, 30, 40, 50, 60], 'Value2': [100, 200, 300, 400, 500, 600]} df = pd.DataFrame(data) # Grouping by 'Category', sorting by 'Value1', and extracting the maximum 'Value2' result = df.groupby('Category').apply(lambda x: x.sort_values('Value1').iloc[-1]['Value2']) print(result) 
  3. "Pandas Python group by one column, sort by another, get third column value highest"

    • This query specifically seeks to find the highest value from a third column after grouping by one column and sorting by another in Pandas.
    import pandas as pd # Sample DataFrame data = {'Group': ['A', 'A', 'B', 'B', 'C', 'C'], 'Score': [10, 20, 30, 40, 50, 60], 'Value': [100, 200, 300, 400, 500, 600]} df = pd.DataFrame(data) # Grouping by 'Group', sorting by 'Score', and extracting the highest 'Value' result = df.groupby('Group').apply(lambda x: x.sort_values('Score').iloc[-1]['Value']) print(result) 
  4. "Python Pandas group by one column, sort by another ascending, get value from third column"

    • This query focuses on ascending sorting while grouping by one column and extracting values from a third column in Pandas.
    import pandas as pd # Sample DataFrame data = {'Team': ['A', 'A', 'B', 'B', 'C', 'C'], 'Points': [30, 20, 60, 50, 90, 80], 'Rank': [1, 2, 1, 2, 1, 2]} df = pd.DataFrame(data) # Grouping by 'Team', sorting by 'Rank' ascending, and extracting values from 'Points' result = df.groupby('Team').apply(lambda x: x.sort_values('Rank', ascending=True).iloc[0]['Points']) print(result) 
  5. "Python Pandas groupby multiple columns, sort by another, get value from third column"

    • This query indicates the necessity of grouping by multiple columns, sorting by another, and extracting values from a third column using Pandas.
    import pandas as pd # Sample DataFrame data = {'Category': ['A', 'A', 'B', 'B', 'C', 'C'], 'Type': ['X', 'Y', 'X', 'Y', 'X', 'Y'], 'Value': [10, 20, 30, 40, 50, 60]} df = pd.DataFrame(data) # Grouping by 'Category' and 'Type', sorting by 'Value', and getting value from third column result = df.groupby(['Category', 'Type']).apply(lambda x: x.sort_values('Value').iloc[-1]['Value']) print(result) 
  6. "Pandas Python groupby one column, sort by another descending, get value from third column"

    • This query emphasizes descending sorting while grouping by one column and extracting values from a third column using Pandas.
    import pandas as pd # Sample DataFrame data = {'Group': ['A', 'A', 'B', 'B', 'C', 'C'], 'Value1': [5, 10, 15, 20, 25, 30], 'Value2': [100, 200, 300, 400, 500, 600]} df = pd.DataFrame(data) # Grouping by 'Group', sorting by 'Value1' descending, and extracting values from 'Value2' result = df.groupby('Group').apply(lambda x: x.sort_values('Value1', ascending=False).iloc[0]['Value2']) print(result) 
  7. "Python Pandas group by one column, sort by another column in descending order, extract value from third column"

    • This query specifically asks for sorting in descending order while grouping by one column and extracting values from a third column using Pandas.
    import pandas as pd # Sample DataFrame data = {'Group': ['A', 'A', 'B', 'B', 'C', 'C'], 'Value1': [20, 10, 30, 40, 50, 60], 'Value2': [200, 100, 300, 400, 500, 600]} df = pd.DataFrame(data) # Grouping by 'Group', sorting by 'Value1' descending, and extracting values from 'Value2' result = df.groupby('Group').apply(lambda x: x.sort_values('Value1', ascending=False).iloc[0]['Value2']) print(result) 

More Tags

dictionary-attack cryptoswift query-by-example cpu-speed config entity-framework-migrations hashtable jcombobox git-config pubmed

More Programming Questions

More Cat Calculators

More Mixtures and solutions Calculators

More Pregnancy Calculators

More Stoichiometry Calculators