To count multiple values across all columns in a Pandas DataFrame in Python, you can use various methods depending on what exactly you want to count. Here are a few common scenarios and how you can approach them:
If you want to count occurrences of specific values (say, True or False) across all columns in your DataFrame:
import pandas as pd # Example DataFrame data = { 'A': [True, False, True, False], 'B': [True, True, False, True], 'C': [False, True, True, False] } df = pd.DataFrame(data) # Count occurrences of True across all columns true_counts = df[df == True].count() # Count occurrences of False across all columns false_counts = df[df == False].count() print("True counts:") print(true_counts) print("\nFalse counts:") print(false_counts) If you want to count unique values across all columns:
import pandas as pd # Example DataFrame data = { 'A': [1, 2, 3, 2], 'B': [2, 3, 4, 5], 'C': [3, 2, 1, 4] } df = pd.DataFrame(data) # Count unique values across all columns unique_value_counts = df.apply(pd.Series.value_counts).fillna(0) print("Unique value counts:") print(unique_value_counts) This will show how many times each unique value appears across all columns.
If you want to count occurrences of specific values (not necessarily True/False) across all columns, you can use the applymap() function along with value_counts():
import pandas as pd # Example DataFrame data = { 'A': ['apple', 'banana', 'apple', 'banana'], 'B': ['banana', 'apple', 'cherry', 'apple'], 'C': ['cherry', 'banana', 'banana', 'apple'] } df = pd.DataFrame(data) # Count occurrences of specific values across all columns value_counts = df.apply(pd.Series.value_counts).fillna(0) print("Value counts:") print(value_counts) df[df == True].count(): This counts occurrences of True across all columns (df[df == False].count() for False).df.apply(pd.Series.value_counts).fillna(0): This applies the value_counts() function to each column, counting occurrences of each unique value in that column. fillna(0) replaces NaN values (where a particular value doesn't appear in a column) with 0.Choose the approach that best fits your specific use case based on what you need to count across your DataFrame columns.
Query: Python pandas count occurrences of multiple values in dataframe.
import pandas as pd # Sample DataFrame data = {'A': [1, 2, 3, 4], 'B': ['foo', 'bar', 'foo', 'baz'], 'C': [True, False, True, True]} df = pd.DataFrame(data) # Count occurrences of values 'foo' and True across all columns count = df.isin(['foo', True]).sum().sum() print("Total count:", count) Query: Pandas count occurrences of multiple values in all columns.
import pandas as pd # Sample DataFrame data = {'A': [1, 2, 3, 4], 'B': ['foo', 'bar', 'foo', 'baz'], 'C': [True, False, True, True]} df = pd.DataFrame(data) # Count occurrences of values 'foo' and True in each column count_series = df.apply(lambda x: x.isin(['foo', True]).sum()) total_count = count_series.sum() print("Total count:", total_count) Query: Python pandas count occurrences of values in all columns.
import pandas as pd # Sample DataFrame data = {'A': [1, 2, 3, 4], 'B': ['foo', 'bar', 'foo', 'baz'], 'C': [True, False, True, True]} df = pd.DataFrame(data) # Count occurrences of values in all columns count_dict = {} for col in df.columns: count_dict[col] = df[col].isin(['foo', True]).sum() print("Column-wise counts:", count_dict) Query: Pandas count occurrences of specific values across all columns.
import pandas as pd # Sample DataFrame data = {'A': [1, 2, 3, 4], 'B': ['foo', 'bar', 'foo', 'baz'], 'C': [True, False, True, True]} df = pd.DataFrame(data) # Count occurrences of values across all columns count = df.isin([1, 'foo', True]).sum().sum() print("Total count:", count) Query: Python pandas count multiple values in DataFrame.
import pandas as pd # Sample DataFrame data = {'A': [1, 2, 3, 4], 'B': ['foo', 'bar', 'foo', 'baz'], 'C': [True, False, True, True]} df = pd.DataFrame(data) # Count occurrences of values 'foo', 'bar', True across all columns values_to_count = ['foo', 'bar', True] count = df.isin(values_to_count).sum().sum() print("Total count:", count) Query: Pandas count occurrences of multiple values in all DataFrame columns.
import pandas as pd # Sample DataFrame data = {'A': [1, 2, 3, 4], 'B': ['foo', 'bar', 'foo', 'baz'], 'C': [True, False, True, True]} df = pd.DataFrame(data) # Count occurrences of values 'foo', 'bar', True in each column values_to_count = ['foo', 'bar', True] count_series = df.apply(lambda x: x.isin(values_to_count).sum()) total_count = count_series.sum() print("Total count:", total_count) Query: Python pandas count occurrences of specific values in DataFrame columns.
import pandas as pd # Sample DataFrame data = {'A': [1, 2, 3, 4], 'B': ['foo', 'bar', 'foo', 'baz'], 'C': [True, False, True, True]} df = pd.DataFrame(data) # Count occurrences of specific values in each column values_to_count = {'A': [1, 2], 'B': ['foo'], 'C': [True]} count_dict = {col: df[col].isin(values_to_count[col]).sum() for col in df.columns} print("Column-wise counts:", count_dict) Query: Pandas count occurrences of values across multiple columns.
import pandas as pd # Sample DataFrame data = {'A': [1, 2, 3, 4], 'B': ['foo', 'bar', 'foo', 'baz'], 'C': [True, False, True, True]} df = pd.DataFrame(data) # Count occurrences of values in specific columns values_to_count = {'A': [1, 2], 'B': ['foo']} count_dict = {col: df[col].isin(values_to_count[col]).sum() for col in values_to_count} print("Column-wise counts:", count_dict) Query: Python pandas count occurrences of values across all DataFrame rows and columns.
import pandas as pd # Sample DataFrame data = {'A': [1, 2, 3, 4], 'B': ['foo', 'bar', 'foo', 'baz'], 'C': [True, False, True, True]} df = pd.DataFrame(data) # Count occurrences of values across all rows and columns values_to_count = ['foo', True] count = df.apply(lambda x: x.isin(values_to_count).sum().sum()) print("Total count:", count) Query: Pandas count occurrences of values in DataFrame by column.
import pandas as pd # Sample DataFrame data = {'A': [1, 2, 3, 4], 'B': ['foo', 'bar', 'foo', 'baz'], 'C': [True, False, True, True]} df = pd.DataFrame(data) # Count occurrences of values in each column values_to_count = {'A': [1, 2], 'B': ['foo'], 'C': [True]} count_dict = {col: df[col].isin(values_to_count[col]).sum() for col in df.columns} print("Column-wise counts:", count_dict) weighted tail .net-6.0 touch-event horizontalscrollview uisearchbardisplaycontrol internet-explorer-10 rustup softkeys pageviews