pandas - XML to CSV Python

Pandas - XML to CSV Python

To convert XML data to CSV using Python, you can leverage Python's xml.etree.ElementTree for parsing XML and then use pandas to handle the CSV creation. Here's a step-by-step approach to achieve this:

Step-by-Step Approach:

  1. Parse XML Data:

    • Use xml.etree.ElementTree to parse the XML data and extract relevant information.
    • For this example, let's assume your XML structure contains elements that represent rows of data and child elements representing columns.
  2. Convert to DataFrame:

    • Use pandas to create a DataFrame from the parsed XML data.
    • Each row from the XML will be added as a row in the DataFrame.
  3. Write DataFrame to CSV:

    • Use pandas.DataFrame.to_csv() to write the DataFrame to a CSV file.

Example Implementation:

Assume you have XML data structured like this:

<data> <record> <id>1</id> <name>John Doe</name> <age>30</age> </record> <record> <id>2</id> <name>Jane Smith</name> <age>25</age> </record> </data> 

And you want to convert this to a CSV file where each <record> element becomes a row in the CSV file with id, name, and age as columns.

import xml.etree.ElementTree as ET import pandas as pd # Parse XML data tree = ET.parse('data.xml') # Replace with your XML file path root = tree.getroot() # Initialize lists to store data ids = [] names = [] ages = [] # Iterate through each record for record in root.findall('record'): ids.append(record.find('id').text) names.append(record.find('name').text) ages.append(record.find('age').text) # Create DataFrame df = pd.DataFrame({ 'id': ids, 'name': names, 'age': ages }) # Write DataFrame to CSV df.to_csv('output.csv', index=False) 

Explanation:

  • XML Parsing: ET.parse('data.xml') reads the XML file (data.xml) and parses it into an ElementTree object (tree).
  • Data Extraction: root.findall('record') iterates through each <record> element under the root <data> element, extracting <id>, <name>, and <age> values into separate lists (ids, names, ages).
  • DataFrame Creation: pd.DataFrame() creates a DataFrame from the lists of data (ids, names, ages).
  • CSV Output: df.to_csv('output.csv', index=False) writes the DataFrame (df) to a CSV file named output.csv without including the index column.

Notes:

  • Adjust the XML structure and parsing logic (find() and findall()) based on your specific XML format.
  • Handle more complex XML structures by modifying the data extraction part (for record in root.findall('record')) accordingly.
  • Ensure that the column names in the DataFrame match your XML element names.

This example demonstrates a basic approach to converting XML data to CSV using Python with xml.etree.ElementTree and pandas. Adjustments may be needed based on the complexity and structure of your XML data.

Examples

  1. pandas XML to CSV

    • Description: Convert XML data into a CSV file using pandas in Python.
    • pandas XML to CSV
    • Code:
      import pandas as pd import xml.etree.ElementTree as ET # Parse XML data tree = ET.parse('data.xml') root = tree.getroot() # Define DataFrame columns columns = ['Name', 'Age', 'City'] rows = [] # Extract data from XML and append to rows for person in root.findall('Person'): name = person.find('Name').text age = int(person.find('Age').text) city = person.find('City').text rows.append({'Name': name, 'Age': age, 'City': city}) # Create DataFrame from rows df = pd.DataFrame(rows, columns=columns) # Save DataFrame to CSV df.to_csv('data.csv', index=False) 
    • Explanation: This code snippet reads XML data from data.xml, extracts relevant fields ('Name', 'Age', 'City') for each 'Person' element, and saves it to a CSV file using pandas.
  2. pandas XML parsing example

    • Description: Parse XML data and convert it to a structured DataFrame using pandas in Python.
    • pandas XML parsing example
    • Code:
      import pandas as pd import xml.etree.ElementTree as ET # Parse XML data tree = ET.parse('data.xml') root = tree.getroot() # Initialize DataFrame columns columns = ['Title', 'Author', 'Year'] rows = [] # Extract data from XML and append to rows for book in root.findall('Book'): title = book.find('Title').text author = book.find('Author').text year = int(book.find('Year').text) rows.append({'Title': title, 'Author': author, 'Year': year}) # Create DataFrame from rows df = pd.DataFrame(rows, columns=columns) # Save DataFrame to CSV df.to_csv('books.csv', index=False) 
    • Explanation: This code demonstrates parsing XML data from data.xml, extracting book details ('Title', 'Author', 'Year') from each 'Book' element, and saving the structured data to a CSV file using pandas.
  3. pandas read XML file and convert to CSV

    • Description: Read an XML file and convert its contents to CSV format using pandas in Python.
    • pandas read XML file and convert to CSV
    • Code:
      import pandas as pd from xml.etree import ElementTree as ET # Read XML file tree = ET.parse('data.xml') root = tree.getroot() # Initialize DataFrame columns columns = ['Country', 'Capital', 'Population'] rows = [] # Extract data from XML and append to rows for country in root.findall('Country'): name = country.find('Name').text capital = country.find('Capital').text population = int(country.find('Population').text) rows.append({'Country': name, 'Capital': capital, 'Population': population}) # Create DataFrame from rows df = pd.DataFrame(rows, columns=columns) # Save DataFrame to CSV df.to_csv('countries.csv', index=False) 
    • Explanation: This code snippet reads XML data from data.xml, extracts country details ('Country', 'Capital', 'Population') for each 'Country' element, and saves it to a CSV file using pandas.
  4. pandas XML to DataFrame

    • Description: Convert XML data to a pandas DataFrame in Python.
    • pandas XML to DataFrame
    • Code:
      import pandas as pd from xml.etree import ElementTree as ET # Read XML data tree = ET.parse('data.xml') root = tree.getroot() # Initialize DataFrame columns columns = ['ProductName', 'Price', 'Category'] rows = [] # Extract data from XML and append to rows for product in root.findall('Product'): name = product.find('ProductName').text price = float(product.find('Price').text) category = product.find('Category').text rows.append({'ProductName': name, 'Price': price, 'Category': category}) # Create DataFrame from rows df = pd.DataFrame(rows, columns=columns) # Save DataFrame to CSV df.to_csv('products.csv', index=False) 
    • Explanation: This code example shows how to parse XML data from data.xml, extract product details ('ProductName', 'Price', 'Category') for each 'Product' element, and save it as a CSV file using pandas.
  5. pandas parse XML attributes to CSV

    • Description: Parse XML attributes and convert them to a CSV file using pandas in Python.
    • pandas parse XML attributes to CSV
    • Code:
      import pandas as pd import xml.etree.ElementTree as ET # Parse XML data tree = ET.parse('data.xml') root = tree.getroot() # Initialize DataFrame columns columns = ['ID', 'Name', 'Price'] rows = [] # Extract data from XML attributes and append to rows for product in root.findall('Product'): id = product.attrib['ID'] name = product.attrib['Name'] price = float(product.attrib['Price']) rows.append({'ID': id, 'Name': name, 'Price': price}) # Create DataFrame from rows df = pd.DataFrame(rows, columns=columns) # Save DataFrame to CSV df.to_csv('products.csv', index=False) 
    • Explanation: This code snippet parses XML attributes from data.xml, extracts product details ('ID', 'Name', 'Price') for each 'Product' element, and saves it to a CSV file using pandas.
  6. pandas XML data extraction to CSV

    • Description: Extract specific data from XML and save it as CSV using pandas in Python.
    • pandas XML data extraction to CSV
    • Code:
      import pandas as pd import xml.etree.ElementTree as ET # Parse XML data tree = ET.parse('data.xml') root = tree.getroot() # Initialize DataFrame columns columns = ['Username', 'Email', 'Role'] rows = [] # Extract data from XML and append to rows for user in root.findall('User'): username = user.find('Username').text email = user.find('Email').text role = user.find('Role').text rows.append({'Username': username, 'Email': email, 'Role': role}) # Create DataFrame from rows df = pd.DataFrame(rows, columns=columns) # Save DataFrame to CSV df.to_csv('users.csv', index=False) 
    • Explanation: This code demonstrates how to parse XML data from data.xml, extract user details ('Username', 'Email', 'Role') from each 'User' element, and save it as a CSV file using pandas.
  7. pandas XML parsing and CSV export

    • Description: Parse XML data and export it to a CSV file using pandas in Python.
    • pandas XML parsing and CSV export
    • Code:
      import pandas as pd import xml.etree.ElementTree as ET # Parse XML data tree = ET.parse('data.xml') root = tree.getroot() # Initialize DataFrame columns columns = ['Code', 'Name', 'Quantity'] rows = [] # Extract data from XML and append to rows for item in root.findall('Item'): code = item.attrib['Code'] name = item.find('Name').text quantity = int(item.find('Quantity').text) rows.append({'Code': code, 'Name': name, 'Quantity': quantity}) # Create DataFrame from rows df = pd.DataFrame(rows, columns=columns) # Save DataFrame to CSV df.to_csv('items.csv', index=False) 
    • Explanation: This code snippet reads XML data from data.xml, extracts item details ('Code', 'Name', 'Quantity') for each 'Item' element, and saves it to a CSV file using pandas.
  8. pandas XML to tabular data

    • Description: Convert XML structured data to tabular format (CSV) using pandas in Python.
    • pandas XML to tabular data
    • Code:
      import pandas as pd import xml.etree.ElementTree as ET # Parse XML data tree = ET.parse('data.xml') root = tree.getroot() # Initialize DataFrame columns columns = ['OrderID', 'Customer', 'Amount'] rows = [] # Extract data from XML and append to rows for order in root.findall('Order'): order_id = order.find('OrderID').text customer = order.find('Customer').text amount = float(order.find('Amount').text) rows.append({'OrderID': order_id, 'Customer': customer, 'Amount': amount}) # Create DataFrame from rows df = pd.DataFrame(rows, columns=columns) # Save DataFrame to CSV df.to_csv('orders.csv', index=False) 
    • Explanation: This code example parses XML data from data.xml, extracts order details ('OrderID', 'Customer', 'Amount') for each 'Order' element, and saves it as a CSV file using pandas.
  9. pandas convert XML elements to CSV

    • Description: Convert XML elements to CSV format using pandas in Python.
    • pandas convert XML elements to CSV
    • Code:
      import pandas as pd import xml.etree.ElementTree as ET # Parse XML data tree = ET.parse('data.xml') root = tree.getroot() # Initialize DataFrame columns columns = ['ID', 'Name', 'Value'] rows = [] # Extract data from XML and append to rows for element in root.findall('Element'): id = element.attrib['ID'] name = element.find('Name').text value = float(element.find('Value').text) rows.append({'ID': id, 'Name': name, 'Value': value}) # Create DataFrame from rows df = pd.DataFrame(rows, columns=columns) # Save DataFrame to CSV df.to_csv('elements.csv', index=False) 
    • Explanation: This code snippet reads XML data from data.xml, extracts element details ('ID', 'Name', 'Value') for each 'Element' element, and saves it to a CSV file using pandas.
  10. pandas XML parsing and data export

    • Description: Parse XML data and export it to a CSV file using pandas in Python.
    • pandas XML parsing and data export
    • Code:
      import pandas as pd import xml.etree.ElementTree as ET # Parse XML data tree = ET.parse('data.xml') root = tree.getroot() # Initialize DataFrame columns columns = ['StudentID', 'Name', 'Grade'] rows = [] # Extract data from XML and append to rows for student in root.findall('Student'): student_id = student.find('StudentID').text name = student.find('Name').text grade = float(student.find('Grade').text) rows.append({'StudentID': student_id, 'Name': name, 'Grade': grade}) # Create DataFrame from rows df = pd.DataFrame(rows, columns=columns) # Save DataFrame to CSV df.to_csv('students.csv', index=False) 
    • Explanation: This code example demonstrates parsing XML data from data.xml, extracting student details ('StudentID', 'Name', 'Grade') for each 'Student' element, and saving it as a CSV file using pandas.

More Tags

eslintrc ejs cancellation-token django-generic-views ngroute material-design collocation apiconnect sqldataadapter simple-form

More Programming Questions

More Mixtures and solutions Calculators

More Chemical reactions Calculators

More Bio laboratory Calculators

More Electrochemistry Calculators