matplotlib - How to plot a time series array, with confidence intervals displayed, in python?

Matplotlib - How to plot a time series array, with confidence intervals displayed, in python?

You can use Matplotlib along with NumPy to plot a time series array with confidence intervals in Python. Here's a step-by-step guide:

  1. Prepare the Data: Ensure that you have your time series data and the corresponding confidence intervals ready. You can represent your data as NumPy arrays or pandas Series/DataFrames.

  2. Import Libraries: Import the necessary libraries, including Matplotlib and NumPy.

  3. Plot the Time Series: Use Matplotlib's plot function to plot the time series data. You can specify the x-axis (time) and y-axis (values). Additionally, you can use the fill_between function to fill the area between the upper and lower confidence intervals.

Here's an example code snippet:

import matplotlib.pyplot as plt import numpy as np # Generate example time series data time = np.arange(0, 10, 0.1) values = np.sin(time) confidence_interval = 0.1 * np.abs(values) # Example confidence interval # Plot time series data plt.plot(time, values, label='Time Series') # Plot confidence intervals plt.fill_between(time, values - confidence_interval, values + confidence_interval, color='gray', alpha=0.3, label='Confidence Intervals') # Add labels and legend plt.xlabel('Time') plt.ylabel('Values') plt.title('Time Series with Confidence Intervals') plt.legend() # Show plot plt.show() 

This code will generate a plot of a sine wave as the time series data, with confidence intervals displayed as shaded regions around the curve.

Ensure that your data is appropriately formatted and adjust the parameters as needed to fit your specific dataset.

Examples

  1. Plotting time series with confidence intervals using Matplotlib in Python:

    • "How to use Matplotlib to plot a time series array with confidence intervals in Python?"
    • Description: Matplotlib can be used to create visually appealing plots of time series data, including the display of confidence intervals to indicate the uncertainty in the data.
    • Code:
      import matplotlib.pyplot as plt import numpy as np # Generate example time series data np.random.seed(0) x = np.arange(0, 10, 0.1) y = np.sin(x) + np.random.normal(0, 0.1, len(x)) y_err = np.random.normal(0.1, 0.02, len(x)) # Example confidence intervals # Plot the time series with confidence intervals plt.figure(figsize=(10, 6)) plt.plot(x, y, label='Time Series') plt.fill_between(x, y - y_err, y + y_err, alpha=0.2, label='Confidence Intervals') plt.xlabel('Time') plt.ylabel('Value') plt.title('Time Series with Confidence Intervals') plt.legend() plt.grid(True) plt.show() 
  2. Python code for plotting time series data with confidence bounds using Matplotlib:

    • "Plotting time series with upper and lower confidence bounds using Matplotlib in Python"
    • Description: This code demonstrates how to visualize time series data along with upper and lower confidence bounds using Matplotlib.
    • Code:
      import matplotlib.pyplot as plt import numpy as np # Generate example time series data np.random.seed(0) x = np.arange(0, 10, 0.1) y = np.sin(x) + np.random.normal(0, 0.1, len(x)) upper_bound = y + 0.2 lower_bound = y - 0.2 # Plot the time series with confidence bounds plt.figure(figsize=(10, 6)) plt.plot(x, y, label='Time Series') plt.fill_between(x, lower_bound, upper_bound, alpha=0.2, label='Confidence Bounds') plt.xlabel('Time') plt.ylabel('Value') plt.title('Time Series with Confidence Bounds') plt.legend() plt.grid(True) plt.show() 
  3. Python code for plotting time series with confidence intervals using Matplotlib and Seaborn:

    • "How to plot time series data with confidence intervals using Matplotlib and Seaborn in Python?"
    • Description: This code combines Matplotlib with Seaborn to create a plot of time series data with confidence intervals.
    • Code:
      import matplotlib.pyplot as plt import seaborn as sns import numpy as np # Generate example time series data np.random.seed(0) x = np.arange(0, 10, 0.1) y = np.sin(x) + np.random.normal(0, 0.1, len(x)) y_err = np.random.normal(0.1, 0.02, len(x)) # Example confidence intervals # Plot the time series with confidence intervals using Seaborn plt.figure(figsize=(10, 6)) sns.lineplot(x=x, y=y) plt.fill_between(x, y - y_err, y + y_err, alpha=0.2) plt.xlabel('Time') plt.ylabel('Value') plt.title('Time Series with Confidence Intervals') plt.grid(True) plt.show() 
  4. Python code for plotting time series data with shaded confidence intervals using Matplotlib:

    • "How to create a plot of time series data with shaded confidence intervals using Matplotlib in Python?"
    • Description: This code snippet demonstrates how to use Matplotlib to generate a plot of time series data with shaded confidence intervals.
    • Code:
      import matplotlib.pyplot as plt import numpy as np # Generate example time series data np.random.seed(0) x = np.arange(0, 10, 0.1) y = np.sin(x) + np.random.normal(0, 0.1, len(x)) y_err = np.random.normal(0.1, 0.02, len(x)) # Example confidence intervals # Plot the time series with shaded confidence intervals plt.figure(figsize=(10, 6)) plt.plot(x, y) plt.fill_between(x, y - y_err, y + y_err, alpha=0.2) plt.xlabel('Time') plt.ylabel('Value') plt.title('Time Series with Shaded Confidence Intervals') plt.grid(True) plt.show() 
  5. Python code to plot time series with confidence intervals using Matplotlib and Pandas:

    • "Plotting time series data with confidence intervals using Matplotlib and Pandas in Python"
    • Description: This code snippet illustrates how to plot time series data with confidence intervals using Matplotlib and Pandas.
    • Code:
      import matplotlib.pyplot as plt import pandas as pd import numpy as np # Generate example time series data np.random.seed(0) x = np.arange(0, 10, 0.1) y = np.sin(x) + np.random.normal(0, 0.1, len(x)) y_err = np.random.normal(0.1, 0.02, len(x)) # Example confidence intervals # Create DataFrame with time series data df = pd.DataFrame({'Time': x, 'Value': y}) # Plot the time series with confidence intervals using Pandas plotting plt.figure(figsize=(10, 6)) df.plot(x='Time', y='Value', ax=plt.gca()) plt.fill_between(x, y - y_err, y + y_err, alpha=0.2) plt.xlabel('Time') plt.ylabel('Value') plt.title('Time Series with Confidence Intervals') plt.grid(True) plt.show() 

More Tags

yarnpkg device-manager monitoring http-status-code-301 amazon-elastic-beanstalk landscape-portrait line-spacing kafka-python delphi-2010 iterable

More Programming Questions

More Stoichiometry Calculators

More Financial Calculators

More Housing Building Calculators

More Weather Calculators