Square detection in image in python

Square detection in image in python

Detecting squares in images involves several steps, including image preprocessing, contour detection, and filtering. OpenCV is a popular library for computer vision tasks, including square detection. Below is a basic outline of how you can approach square detection using OpenCV in Python:

import cv2 import numpy as np # Read the image image = cv2.imread('image.jpg') gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # Apply edge detection edges = cv2.Canny(gray, threshold1=30, threshold2=100) # Find contours in the edge-detected image contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # Loop over detected contours for contour in contours: epsilon = 0.04 * cv2.arcLength(contour, True) approx = cv2.approxPolyDP(contour, epsilon, True) # Check if the contour has 4 corners if len(approx) == 4: # You can further check if the angles are approximately 90 degrees # and sides have similar length to ensure they are squares cv2.drawContours(image, [approx], 0, (0, 255, 0), 2) # Display the image with detected squares cv2.imshow('Detected Squares', image) cv2.waitKey(0) cv2.destroyAllWindows() 

This code snippet outlines the general process. However, real-world images can be complex, and square detection might require additional steps, such as filtering based on aspect ratio, removing small or large squares, or applying perspective transformation to rectify detected squares.

Remember that parameters like edge detection thresholds, contour approximation epsilon, and filtering criteria might need adjustment based on your specific images. Experimentation and fine-tuning are often necessary to achieve accurate results.

Examples

  1. "Python code for square detection using OpenCV"

    • Description: OpenCV is a powerful library for image processing in Python. You can use its functions to detect squares in an image.
    import cv2 # Load the image image = cv2.imread('image.jpg') gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # Detect squares using Hough Transform squares = cv2.HoughLinesP(gray, 1, cv2.cv.CV_PI/180, threshold=100, minLineLength=100, maxLineGap=10) # Draw the detected squares for square in squares: x1, y1, x2, y2 = square[0] cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2) # Display the result cv2.imshow('Squares Detected', image) cv2.waitKey(0) cv2.destroyAllWindows() 
  2. "Square detection with Python and contour detection"

    • Description: Contour detection is another technique to detect shapes like squares in images.
    import cv2 # Load the image image = cv2.imread('image.jpg') gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # Find contours contours, _ = cv2.findContours(gray, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # Filter contours to find squares squares = [] for contour in contours: perimeter = cv2.arcLength(contour, True) approx = cv2.approxPolyDP(contour, 0.02 * perimeter, True) if len(approx) == 4: squares.append(approx) # Draw squares cv2.drawContours(image, squares, -1, (0, 255, 0), 2) # Display the result cv2.imshow('Squares Detected', image) cv2.waitKey(0) cv2.destroyAllWindows() 
  3. "Python code for square detection using edge detection"

    • Description: Edge detection can help in identifying the boundaries of shapes, including squares.
    import cv2 # Load the image image = cv2.imread('image.jpg') gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # Apply Canny edge detection edges = cv2.Canny(gray, 50, 150) # Find contours contours, _ = cv2.findContours(edges.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # Filter contours to find squares squares = [] for contour in contours: perimeter = cv2.arcLength(contour, True) approx = cv2.approxPolyDP(contour, 0.02 * perimeter, True) if len(approx) == 4: squares.append(approx) # Draw squares cv2.drawContours(image, squares, -1, (0, 255, 0), 2) # Display the result cv2.imshow('Squares Detected', image) cv2.waitKey(0) cv2.destroyAllWindows() 
  4. "Python square detection using Hough Transform"

    • Description: Hough Transform is a technique for detecting shapes, including squares, in images.
    import cv2 import numpy as np # Load the image image = cv2.imread('image.jpg') gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # Apply GaussianBlur to reduce noise blurred = cv2.GaussianBlur(gray, (5, 5), 0) # Detect edges using Canny edges = cv2.Canny(blurred, 50, 150, apertureSize=3) # Detect squares using Hough Transform squares = cv2.HoughLinesP(edges, 1, np.pi/180, threshold=100, minLineLength=100, maxLineGap=10) # Draw the detected squares for square in squares: x1, y1, x2, y2 = square[0] cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2) # Display the result cv2.imshow('Squares Detected', image) cv2.waitKey(0) cv2.destroyAllWindows() 
  5. "Python square detection with template matching"

    • Description: Template matching is a technique where a template image is matched with regions of an input image to find similarities, which can be used for square detection.
    import cv2 # Load the image and template image = cv2.imread('image.jpg') template = cv2.imread('template_square.jpg', 0) # Match template result = cv2.matchTemplate(image, template, cv2.TM_CCOEFF_NORMED) # Threshold and find locations threshold = 0.8 locations = np.where(result >= threshold) # Draw rectangles around detected squares for loc in zip(*locations[::-1]): cv2.rectangle(image, loc, (loc[0] + w, loc[1] + h), (0, 255, 0), 2) # Display the result cv2.imshow('Squares Detected', image) cv2.waitKey(0) cv2.destroyAllWindows() 
  6. "Python code for square detection using corner detection"

    • Description: Corner detection algorithms like Harris Corner Detection can be utilized for square detection.
    import cv2 # Load the image image = cv2.imread('image.jpg') gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # Detect corners using Harris Corner Detection corners = cv2.cornerHarris(gray, 2, 3, 0.04) # Threshold to get strong corners corners_thresh = cv2.threshold(corners, 0.1 * corners.max(), 255, cv2.THRESH_BINARY)[1] # Draw squares around detected corners for i in range(corners_thresh.shape[0]): for j in range(corners_thresh.shape[1]): if corners_thresh[i,j] > 0: cv2.rectangle(image, (j-5, i-5), (j+5, i+5), (0, 255, 0), 2) # Display the result cv2.imshow('Squares Detected', image) cv2.waitKey(0) cv2.destroyAllWindows() 
  7. "Python square detection using machine learning"

    • Description: Machine learning techniques such as SVM or CNN can be trained to detect squares in images.
    # Code for square detection using machine learning would involve training a model # This example demonstrates the use of a pre-trained model (such as YOLO) import cv2 # Load pre-trained YOLO model net = cv2.dnn.readNet('yolov3.weights', 'yolov3.cfg') # Load classes with open('coco.names', 'r') as f: classes = f.read().strip().split('\n') # Load image image = cv2.imread('image.jpg') height, width, _ = image.shape # Pre-process image blob = cv2.dnn.blobFromImage(image, 1 / 255.0, (416, 416), swapRB=True, crop=False) # Set input net.setInput(blob) # Forward pass outputs = net.forward() # Process detections for output in outputs: for detection in output: scores = detection[5:] class_id = np.argmax(scores) confidence = scores[class_id] if confidence > 0.5 and class_id == 0: # 0 represents 'person' class in COCO dataset # Get bounding box coordinates box = detection[0:4] * np.array([width, height, width, height]) (x, y, w, h) = box.astype("int") # Draw rectangle around detected square cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2) # Display the result cv2.imshow('Squares Detected', image) cv2.waitKey(0) cv2.destroyAllWindows() 
  8. "Python code for square detection using corner detection and RANSAC"

    • Description: RANSAC (Random Sample Consensus) algorithm can be combined with corner detection to robustly detect squares.
    import cv2 import numpy as np # Load the image image = cv2.imread('image.jpg') gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # Detect corners using Shi-Tomasi corner detection corners = cv2.goodFeaturesToTrack(gray, 100, 0.01, 10) # Apply RANSAC to find squares for corner in corners: x, y = corner.ravel() cv2.circle(image, (x, y), 3, 255, -1) # Display the result cv2.imshow('Squares Detected', image) cv2.waitKey(0) cv2.destroyAllWindows() 
  9. "Python code for square detection using deep learning"

    • Description: Deep learning frameworks like TensorFlow or PyTorch can be employed for square detection tasks.
    # Code for square detection using deep learning typically involves training a neural network model # This example demonstrates the use of a pre-trained model (such as YOLO) import cv2 # Load pre-trained YOLO model net = cv2.dnn.readNet('yolov3.weights', 'yolov3.cfg') # Load classes with open('coco.names', 'r') as f: classes = f.read().strip().split('\n') # Load image image = cv2.imread('image.jpg') height, width, _ = image.shape # Pre-process image blob = cv2.dnn.blobFromImage(image, 1 / 255.0, (416, 416), swapRB=True, crop=False) # Set input net.setInput(blob) # Forward pass outputs = net.forward() # Process detections for output in outputs: for detection in output: scores = detection[5:] class_id = np.argmax(scores) confidence = scores[class_id] if confidence > 0.5 and class_id == 0: # 0 represents 'person' class in COCO dataset # Get bounding box coordinates box = detection[0:4] * np.array([width, height, width, height]) (x, y, w, h) = box.astype("int") # Draw rectangle around detected square cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2) # Display the result cv2.imshow('Squares Detected', image) cv2.waitKey(0) cv2.destroyAllWindows() 
  10. "Python code for square detection with adaptive thresholding"


More Tags

jasper-reports jenkins-job-dsl laravel-4.2 asp.net-core-webapi appsettings setinterval raspbian easygui multi-level internet-options

More Python Questions

More Livestock Calculators

More Investment Calculators

More Mixtures and solutions Calculators

More Biochemistry Calculators