Selecting across multiple columns with pandas

Selecting across multiple columns with pandas

In pandas, you can select across multiple columns of a DataFrame by passing a list of column names or by using label-based indexing. Here are a few ways to select across multiple columns:

Method 1: Using a List of Column Names

import pandas as pd # Sample DataFrame data = {'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]} df = pd.DataFrame(data) # Select specific columns using a list of column names selected_columns = df[['A', 'C']] # Replace 'A' and 'C' with your desired column names print(selected_columns) 

Method 2: Using Label-Based Indexing (.loc)

import pandas as pd # Sample DataFrame data = {'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]} df = pd.DataFrame(data) # Use label-based indexing to select specific columns selected_columns = df.loc[:, ['A', 'C']] # Replace 'A' and 'C' with your desired column names print(selected_columns) 

Method 3: Using Integer Slicing (.iloc)

import pandas as pd # Sample DataFrame data = {'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]} df = pd.DataFrame(data) # Use integer slicing to select specific columns by their positions selected_columns = df.iloc[:, [0, 2]] # Replace 0 and 2 with the positions of your desired columns print(selected_columns) 

In all of these methods, you can replace the column names or positions with the ones you want to select. The result will be a new DataFrame containing only the specified columns.

Remember that when you select multiple columns, the result is still a DataFrame, so you can continue to perform operations and analyses on it as needed.

Examples

  1. Selecting specific columns with pandas in Python:

    # Description: This query demonstrates selecting specific columns with pandas in Python. import pandas as pd df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]}) selected_columns = df[['A', 'C']] 
  2. Selecting columns based on index position with pandas in Python:

    # Description: This query illustrates selecting columns based on index position with pandas in Python. import pandas as pd df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]}) selected_columns = df.iloc[:, [0, 2]] 
  3. Selecting columns with certain data types in pandas in Python:

    # Description: This query showcases selecting columns with certain data types in pandas in Python. import pandas as pd df = pd.DataFrame({'A': [1, 2, 3], 'B': [4.0, 5.0, 6.0], 'C': ['a', 'b', 'c']}) selected_columns = df.select_dtypes(include=['int', 'float']) 
  4. Selecting columns based on a condition with pandas in Python:

    # Description: This query demonstrates selecting columns based on a condition with pandas in Python. import pandas as pd df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]}) selected_columns = df.loc[:, df.columns.str.startswith('A')] 
  5. Selecting columns with non-zero entries in pandas DataFrame in Python:

    # Description: This query illustrates selecting columns with non-zero entries in a pandas DataFrame in Python. import pandas as pd df = pd.DataFrame({'A': [0, 1, 2], 'B': [0, 0, 0], 'C': [0, 0, 0]}) selected_columns = df.loc[:, (df != 0).any()] 
  6. Selecting columns with zero entries in pandas DataFrame in Python:

    # Description: This query showcases selecting columns with zero entries in a pandas DataFrame in Python. import pandas as pd df = pd.DataFrame({'A': [0, 1, 2], 'B': [0, 0, 0], 'C': [0, 0, 0]}) selected_columns = df.loc[:, (df == 0).all()] 
  7. Selecting columns with all non-null entries in pandas DataFrame in Python:

    # Description: This query demonstrates selecting columns with all non-null entries in a pandas DataFrame in Python. import pandas as pd df = pd.DataFrame({'A': [1, 2, None], 'B': [4, None, 6], 'C': [7, 8, 9]}) selected_columns = df.loc[:, df.notnull().all()] 
  8. Selecting columns with any null entries in pandas DataFrame in Python:

    # Description: This query illustrates selecting columns with any null entries in a pandas DataFrame in Python. import pandas as pd df = pd.DataFrame({'A': [1, None, 3], 'B': [4, None, 6], 'C': [7, 8, 9]}) selected_columns = df.loc[:, df.isnull().any()] 
  9. Selecting columns containing a specific string in pandas DataFrame in Python:

    # Description: This query showcases selecting columns containing a specific string in a pandas DataFrame in Python. import pandas as pd df = pd.DataFrame({'Apple': [1, 2, 3], 'Banana': [4, 5, 6], 'Peach': [7, 8, 9]}) selected_columns = df.loc[:, df.columns.str.contains('an')] 
  10. Selecting columns with all unique entries in pandas DataFrame in Python:

    # Description: This query demonstrates selecting columns with all unique entries in a pandas DataFrame in Python. import pandas as pd df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [1, 2, 3]}) selected_columns = df.loc[:, df.apply(lambda x: x.nunique() == len(x))] 

More Tags

solid-principles tintcolor spring-cloud-config next.js database-deadlocks exceljs sqlxml h2o class-validator dart-async

More Python Questions

More General chemistry Calculators

More Fitness Calculators

More Physical chemistry Calculators

More Trees & Forestry Calculators