In Python, the NumPy library doesn't have a direct equivalent to R's summary() function. However, you can achieve similar summary statistics using various NumPy functions.
Here's how you can calculate common summary statistics for a NumPy array:
import numpy as np data = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) mean = np.mean(data) median = np.median(data) std_dev = np.std(data) min_value = np.min(data) max_value = np.max(data) q1 = np.percentile(data, 25) q3 = np.percentile(data, 75) print("Mean:", mean) print("Median:", median) print("Standard Deviation:", std_dev) print("Minimum:", min_value) print("Maximum:", max_value) print("1st Quartile:", q1) print("3rd Quartile:", q3) This code calculates the mean, median, standard deviation, minimum, maximum, and first/third quartiles for a NumPy array named data.
For more advanced summary statistics and exploratory data analysis in Python, you might want to consider using libraries like pandas and scipy.stats, which provide more comprehensive functions for statistical analysis.
For example, using pandas:
import pandas as pd data_series = pd.Series(data) summary = data_series.describe() print(summary)
Using scipy.stats:
from scipy import stats summary = stats.describe(data) print(summary)
These libraries offer functions that provide a wide range of statistical information about your data in a more compact format, similar to R's summary() function.
"How to get summary statistics in numpy similar to R's summary()"
summary() function.import numpy as np data = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9]) summary = { 'min': np.min(data), 'max': np.max(data), 'mean': np.mean(data), 'median': np.median(data), 'q1': np.percentile(data, 25), 'q3': np.percentile(data, 75), 'std': np.std(data) } print(summary) # Output: {'min': 1, 'max': 9, 'mean': 5.0, 'median': 5.0, 'q1': 3.0, 'q3': 7.0, 'std': 2.581988897471611} "How to calculate quartiles in numpy"
summary() function.import numpy as np data = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9]) q1 = np.percentile(data, 25) # First quartile q3 = np.percentile(data, 75) # Third quartile print("Q1:", q1, "Q3:", q3) # Output: Q1: 3.0 Q3: 7.0 "How to calculate median in numpy"
summary() output.import numpy as np data = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9]) median = np.median(data) print("Median:", median) # Output: Median: 5.0 "Calculate standard deviation in numpy"
import numpy as np data = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9]) std_dev = np.std(data) print("Standard Deviation:", std_dev) # Output: Standard Deviation: 2.581988897471611 "How to calculate min and max in numpy"
import numpy as np data = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9]) min_val = np.min(data) max_val = np.max(data) print("Min:", min_val, "Max:", max_val) # Output: Min: 1 Max: 9 "Generate summary statistics for multiple columns in numpy"
import numpy as np data = np.array([ [1, 2, 3], [4, 5, 6], [7, 8, 9] ]) summary = { 'min': np.min(data, axis=0), 'max': np.max(data, axis=0), 'mean': np.mean(data, axis=0), 'median': np.median(data, axis=0), 'std': np.std(data, axis=0) } print(summary) # Output: {'min': array([1, 2, 3]), 'max': array([7, 8, 9]), 'mean': array([4., 5., 6.]), 'median': array([4., 5., 6.]), 'std': array([2.44948974, 2.44948974, 2.44948974])} "Summary statistics for specific subset of data in numpy"
import numpy as np data = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9]) # Define a subset subset = data[data > 5] # Subset of data greater than 5 summary = { 'min': np.min(subset), 'max': np.max(subset), 'mean': np.mean(subset), 'median': np.median(subset), 'std': np.std(subset) } print(summary) # Output: {'min': 6, 'max': 9, 'mean': 7.5, 'median': 7.5, 'std': 1.118033988749895} "Using numpy to generate a summary report for numerical data"
import numpy as np data = np.array([ [1, 2, 3], [4, 5, 6], [7, 8, 9] ]) summary_report = { 'min': np.min(data, axis=0), 'max': np.max(data, axis=0), 'mean': np.mean(data, axis=0), 'median': np.median(data, axis=0), 'std': np.std(data, axis=0) } # Display summary report for key, value in summary_report.items(): print(f"{key.capitalize()}: {value}") "Calculate IQR (Interquartile Range) in numpy for summary statistics"
import numpy as np data = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9]) q1 = np.percentile(data, 25) # First quartile q3 = np.percentile(data, 75) # Third quartile iqr = q3 - q1 # Interquartile Range print("IQR:", iqr) # Output: IQR: 4.0 "Using numpy to calculate summary statistics with NaN values"
import numpy as np data = np.array([1, 2, np.nan, 4, 5, 6, 7, np.nan, 9]) # Calculate summary statistics ignoring NaN values summary = { 'min': np.nanmin(data), 'max': np.nanmax(data), 'mean': np.nanmean(data), 'median': np.nanmedian(data), 'std': np.nanstd(data) } print(summary) # Output: {'min': 1.0, 'max': 9.0, 'mean': 4.75, 'median': 5.0, 'std': 2.740158016144925} ecmascript-6 command-line-interface django-database form-data uiscreen ramda.js nsregularexpression least-squares ngzone angular2-services