Pandas Rolling Apply custom

Pandas Rolling Apply custom

To apply a custom function using a rolling window in a Pandas DataFrame or Series, you can use the .rolling() method in combination with the .apply() method. The .rolling() method creates a rolling view of the data, and then you can apply your custom function to this rolling view.

Here's an example of how you can achieve this:

import pandas as pd # Sample DataFrame data = {'value': [10, 20, 30, 40, 50, 60]} df = pd.DataFrame(data) # Define a custom function to apply to the rolling window def custom_function(window): # Your custom logic here, for example, return the sum of the window return window.sum() # Apply the custom function using rolling window of size 3 rolling_result = df['value'].rolling(window=3).apply(custom_function, raw=True) # Add the rolling result as a new column in the DataFrame df['rolling_sum'] = rolling_result print(df) 

In this example, we create a custom function custom_function that calculates the sum of the values within the rolling window. We then use the .rolling() method to create a rolling view of the value column with a window size of 3. The .apply() method is used to apply the custom function to each rolling window. The raw=True parameter is used to pass the raw NumPy array of values to the custom function.

Finally, we add the rolling result as a new column named rolling_sum to the original DataFrame.

Keep in mind that rolling window calculations can be memory-intensive, especially for large datasets. If you're working with a large dataset, you might need to consider more efficient ways to perform rolling window calculations.

Examples

  1. How to apply a custom function with rolling window in Pandas?

    • Description: This query seeks a method to apply a custom function over a rolling window in a Pandas DataFrame or Series.
    • Code Implementation:
      import pandas as pd # Sample DataFrame df = pd.DataFrame({'A': [1, 2, 3, 4, 5]}) # Define custom function def custom_function(data): return data.max() - data.min() # Apply custom function with rolling window result = df['A'].rolling(window=3).apply(custom_function) print(result) 
  2. How to compute rolling mean with a custom window size in Pandas?

    • Description: This query focuses on computing the rolling mean using a custom-defined window size and applying it to a Pandas DataFrame or Series.
    • Code Implementation:
      import pandas as pd # Sample DataFrame df = pd.DataFrame({'A': [1, 2, 3, 4, 5]}) # Define custom function for rolling mean def custom_rolling_mean(data, window_size): return data.rolling(window=window_size).mean() # Apply custom rolling mean with window size 3 result = custom_rolling_mean(df['A'], window_size=3) print(result) 
  3. How to apply a custom aggregation function with rolling window in Pandas?

    • Description: This query looks for a way to apply a custom aggregation function over a rolling window in a Pandas DataFrame or Series.
    • Code Implementation:
      import pandas as pd # Sample DataFrame df = pd.DataFrame({'A': [1, 2, 3, 4, 5]}) # Define custom aggregation function def custom_aggregation(data): return data.sum() / len(data) # Apply custom aggregation function with rolling window result = df['A'].rolling(window=3).apply(custom_aggregation) print(result) 
  4. How to compute rolling standard deviation with a custom window size in Pandas?

    • Description: This query involves calculating the rolling standard deviation using a custom window size in a Pandas DataFrame or Series.
    • Code Implementation:
      import pandas as pd # Sample DataFrame df = pd.DataFrame({'A': [1, 2, 3, 4, 5]}) # Define custom function for rolling standard deviation def custom_rolling_std(data, window_size): return data.rolling(window=window_size).std() # Apply custom rolling standard deviation with window size 3 result = custom_rolling_std(df['A'], window_size=3) print(result) 
  5. How to apply a custom transformation with rolling window in Pandas?

    • Description: This query explores applying a custom transformation function over a rolling window in a Pandas DataFrame or Series.
    • Code Implementation:
      import pandas as pd # Sample DataFrame df = pd.DataFrame({'A': [1, 2, 3, 4, 5]}) # Define custom transformation function def custom_transformation(data): return data * 2 # Apply custom transformation with rolling window result = df['A'].rolling(window=3).apply(custom_transformation) print(result) 
  6. How to compute rolling median with a custom window size in Pandas?

    • Description: This query focuses on computing the rolling median using a custom window size and applying it to a Pandas DataFrame or Series.
    • Code Implementation:
      import pandas as pd # Sample DataFrame df = pd.DataFrame({'A': [1, 2, 3, 4, 5]}) # Define custom function for rolling median def custom_rolling_median(data, window_size): return data.rolling(window=window_size).median() # Apply custom rolling median with window size 3 result = custom_rolling_median(df['A'], window_size=3) print(result) 
  7. How to apply a custom function with rolling window and handle missing values in Pandas?

    • Description: This query investigates applying a custom function over a rolling window while handling missing values (NaNs) appropriately in a Pandas DataFrame or Series.
    • Code Implementation:
      import pandas as pd # Sample DataFrame with missing values df = pd.DataFrame({'A': [1, 2, None, 4, 5]}) # Define custom function def custom_function(data): return data.max() - data.min() # Apply custom function with rolling window and handle missing values result = df['A'].rolling(window=3, min_periods=1).apply(custom_function) print(result) 
  8. How to compute rolling sum with a custom window size in Pandas?

    • Description: This query involves calculating the rolling sum using a custom window size and applying it to a Pandas DataFrame or Series.
    • Code Implementation:
      import pandas as pd # Sample DataFrame df = pd.DataFrame({'A': [1, 2, 3, 4, 5]}) # Define custom function for rolling sum def custom_rolling_sum(data, window_size): return data.rolling(window=window_size).sum() # Apply custom rolling sum with window size 3 result = custom_rolling_sum(df['A'], window_size=3) print(result) 
  9. How to apply a custom weighted average with rolling window in Pandas?

    • Description: This query explores applying a custom weighted average function over a rolling window in a Pandas DataFrame or Series.
    • Code Implementation:
      import pandas as pd # Sample DataFrame df = pd.DataFrame({'A': [1, 2, 3, 4, 5]}) # Define custom function for weighted average def custom_weighted_average(data): weights = [0.25, 0.5, 0.25] # Example weights return sum(data * weights) # Apply custom weighted average with rolling window result = df['A'].rolling(window=3).apply(custom_weighted_average) print(result) 
  10. How to compute rolling maximum with a custom window size in Pandas?

    • Description: This query focuses on computing the rolling maximum using a custom window size and applying it to a Pandas DataFrame or Series.
    • Code Implementation:
      import pandas as pd # Sample DataFrame df = pd.DataFrame({'A': [1, 2, 3, 4, 5]}) # Define custom function for rolling maximum def custom_rolling_max(data, window_size): return data.rolling(window=window_size).max() # Apply custom rolling maximum with window size 3 result = custom_rolling_max(df['A'], window_size=3) print(result) 

More Tags

curl-commandline gradle-plugin ssrs-expression catplot reduce stopwatch stdin prefix gensim aapt2

More Python Questions

More Organic chemistry Calculators

More Various Measurements Units Calculators

More Bio laboratory Calculators

More Housing Building Calculators