Pandas convert from datetime to integer timestamp

Pandas convert from datetime to integer timestamp

In Pandas, you can convert a datetime column to integer timestamps using the .astype() method along with the .values attribute. This will give you the Unix-style integer timestamps that represent the number of seconds (or other time unit) since a specified reference point.

Here's how you can do it:

import pandas as pd # Create a DataFrame with a datetime column data = {'datetime_column': ['2023-08-01 12:00:00', '2023-08-02 14:30:00', '2023-08-03 10:15:00']} df = pd.DataFrame(data) df['datetime_column'] = pd.to_datetime(df['datetime_column']) # Convert to datetime # Convert datetime column to integer timestamps df['timestamp'] = df['datetime_column'].astype(int) // 10**9 # Convert nanoseconds to seconds print(df) 

In this example, the // 10**9 division is used to convert nanoseconds to seconds since the Unix epoch. The result is a new column named "timestamp" containing integer timestamps.

Keep in mind that these integer timestamps are Unix-style timestamps and represent the number of seconds since January 1, 1970 (the Unix epoch). If you're looking for other types of timestamp representations or more customization, Pandas provides various datetime-related functions and options to achieve that.

Examples

  1. "Pandas datetime to integer timestamp conversion"

    • Description: Convert Pandas datetime objects to integer timestamp values.
    import pandas as pd # Sample DataFrame with datetime column df = pd.DataFrame({'datetime_column': pd.to_datetime(['2024-01-01', '2024-01-02', '2024-01-03'])}) # Convert datetime to integer timestamp df['timestamp_column'] = df['datetime_column'].astype(int) // 10**9 # Divide by 10^9 to convert nanoseconds to seconds 
  2. "Pandas timestamp conversion from datetime"

    • Description: Transform datetime values in a Pandas DataFrame to integer timestamps.
    import pandas as pd # Sample DataFrame with datetime column df = pd.DataFrame({'datetime_column': pd.to_datetime(['2024-01-01', '2024-01-02', '2024-01-03'])}) # Convert datetime to integer timestamp df['timestamp_column'] = (df['datetime_column'] - pd.Timestamp("1970-01-01")) // pd.Timedelta(seconds=1) 
  3. "Python Pandas convert datetime to unix timestamp"

    • Description: Convert datetime values in a Pandas DataFrame to Unix timestamp format.
    import pandas as pd # Sample DataFrame with datetime column df = pd.DataFrame({'datetime_column': pd.to_datetime(['2024-01-01', '2024-01-02', '2024-01-03'])}) # Convert datetime to Unix timestamp df['timestamp_column'] = df['datetime_column'].astype(int) // 10**9 
  4. "Pandas datetime to seconds since epoch"

    • Description: Calculate the number of seconds elapsed since the Unix epoch from Pandas datetime objects.
    import pandas as pd # Sample DataFrame with datetime column df = pd.DataFrame({'datetime_column': pd.to_datetime(['2024-01-01', '2024-01-02', '2024-01-03'])}) # Convert datetime to seconds since epoch df['timestamp_column'] = (df['datetime_column'] - pd.Timestamp("1970-01-01")) // pd.Timedelta(seconds=1) 
  5. "Python Pandas convert datetime to Unix time"

    • Description: Transform Pandas datetime values to Unix time (integer timestamp).
    import pandas as pd # Sample DataFrame with datetime column df = pd.DataFrame({'datetime_column': pd.to_datetime(['2024-01-01', '2024-01-02', '2024-01-03'])}) # Convert datetime to Unix timestamp df['timestamp_column'] = (df['datetime_column'] - pd.Timestamp("1970-01-01")) // pd.Timedelta(seconds=1) 
  6. "Pandas timestamp conversion from datetime64"

    • Description: Convert datetime64 data type in a Pandas DataFrame to integer timestamps.
    import pandas as pd # Sample DataFrame with datetime64 column df = pd.DataFrame({'datetime_column': pd.to_datetime(['2024-01-01', '2024-01-02', '2024-01-03'])}) # Convert datetime64 to integer timestamp df['timestamp_column'] = df['datetime_column'].astype(int) // 10**9 
  7. "Python Pandas datetime to Unix timestamp"

    • Description: Convert Pandas datetime objects to Unix timestamp format.
    import pandas as pd # Sample DataFrame with datetime column df = pd.DataFrame({'datetime_column': pd.to_datetime(['2024-01-01', '2024-01-02', '2024-01-03'])}) # Convert datetime to Unix timestamp df['timestamp_column'] = (df['datetime_column'] - pd.Timestamp("1970-01-01")) // pd.Timedelta(seconds=1) 
  8. "Pandas convert datetime to POSIX timestamp"

    • Description: Change Pandas datetime values to POSIX timestamp (integer).
    import pandas as pd # Sample DataFrame with datetime column df = pd.DataFrame({'datetime_column': pd.to_datetime(['2024-01-01', '2024-01-02', '2024-01-03'])}) # Convert datetime to POSIX timestamp df['timestamp_column'] = df['datetime_column'].astype(int) // 10**9 
  9. "Python Pandas datetime to epoch seconds"

    • Description: Convert Pandas datetime objects to seconds since the Unix epoch.
    import pandas as pd # Sample DataFrame with datetime column df = pd.DataFrame({'datetime_column': pd.to_datetime(['2024-01-01', '2024-01-02', '2024-01-03'])}) # Convert datetime to seconds since epoch df['timestamp_column'] = (df['datetime_column'] - pd.Timestamp("1970-01-01")) // pd.Timedelta(seconds=1) 
  10. "Pandas convert datetime to Unix epoch time"

    • Description: Convert Pandas datetime values to Unix epoch time (integer timestamp).
    import pandas as pd # Sample DataFrame with datetime column df = pd.DataFrame({'datetime_column': pd.to_datetime(['2024-01-01', '2024-01-02', '2024-01-03'])}) # Convert datetime to Unix epoch time df['timestamp_column'] = (df['datetime_column'] - pd.Timestamp("1970-01-01")) // pd.Timedelta(seconds=1) 

More Tags

merge-conflict-resolution preact angular-router netflix-feign teradata-sql-assistant mask angular-material-6 css-float visual-studio-2015 jenkins-job-dsl

More Python Questions

More Animal pregnancy Calculators

More Biology Calculators

More Fitness Calculators

More Statistics Calculators